PROOFS III

Theorem 1. Let $a, b \in \mathbb{Z}$. If 7 does not divide ab, then 7 divides neither a nor b. **1.** Write the **contrapositive** and the **negation** of Theorem 1.

Two proofs of Theorem 1 are given below. Both proofs basically work, but neither is perfect. Read the proofs carefully and note places where they could be improved. Then write a perfect proof of the theorem (using whatever approach you deem best).

Proof. Suppose $a, b \in \mathbb{Z}$ and 7|a or 7|b. By definition, there is an n such that 7n = a or 7n = b. Hence 7na or 7nb equals ab. By definition 7|(ab). This proves the contrapositive. \Box

Proof by contradiction. Suppose $7 \nmid (ab)$ and 7|a or 7|b. Without loss of generality, suppose 7|a. Then ab = 7xb for some $x \in \mathbb{Z}$. By definition 7|(ab), which is a contradiction. \Box

2. Write a perfect proof of the theorem.

Date: October 3, 2018.

3. Prove that for every $n \in \mathbb{N}$, $4 \nmid (n^2 + 2)$.