PROOFS III

Theorem 1. Let $a, b \in \mathbb{Z}$. If 7 does not divide $a b$, then 7 divides neither a nor b.

1. Write the contrapositive and the negation of Theorem 1 .

Two proofs of Theorem 1 are given below. Both proofs basically work, but neither is perfect. Read the proofs carefully and note places where they could be improved. Then write a perfect proof of the theorem (using whatever approach you deem best).

Proof. Suppose $a, b \in \mathbb{Z}$ and $7 \mid a$ or $7 \mid b$. By definition, there is an n such that $7 n=a$ or $7 n=b$. Hence $7 n a$ or $7 n b$ equals $a b$. By definition $7 \mid(a b)$. This proves the contrapositive.

Proof by contradiction. Suppose $7 \nmid(a b)$ and $7 \mid a$ or $7 \mid b$. Without loss of generality, suppose $7 \mid a$. Then $a b=7 x b$ for some $x \in \mathbb{Z}$. By definition $7 \mid(a b)$, which is a contradiction.
2. Write a perfect proof of the theorem.
3. Prove that for every $n \in \mathbb{N}, 4 \nmid\left(n^{2}+2\right)$.

