EXISTENCE PROOFS AND EQUIVALENCES

1. Let $a, b \in \mathbb{N}$. Our goal is to prove that a and b have a unique greatest common divisor. More precisely, we'll show that there is a unique integer d such that d divides both a and b and if c is an integer that also divides both a and b, then $c \leq d$. In mathematics:

$$
\exists!d \in \mathbb{Z}, d|a \wedge d| b \wedge(\forall c \in \mathbb{Z}, \quad(c|a \wedge c| b) \Longrightarrow c \leq d)
$$

Proof. Let $a, b \in \mathbb{N}$. Let $A=\{x \in \mathbb{Z}: x \mid a$ and $x \mid b\}$. If $n \in A$, then $n \mid a$, and thus $n \leq a$. It follows that if A has any elements at all, then it has a greatest element.
a) Prove that $A \neq \emptyset$.

Solution. Observe that $1 \mid a$ and $1 \mid b$ regardless of the actual values of a and b. Hence $1 \in A$. Therefore $A \neq \emptyset$.
b) Let d be the greatest element of A. Prove that $d=\operatorname{gcd}(a, b)$.

Solution. Because $d \in A$, we know that $d \mid a$ and $d \mid b$, so d is a common divisor of a and b. Also, if $c \mid a$ and $c \mid b$, then $c \in A$, so $c \leq d$. Therefore d is a greatest common divisor of a and b.
c) Now we prove that d is unique. Suppose that d^{\prime} is an integer that divides both a and b and that d^{\prime} is greater than or equal to all other divisors of both a and b. Show that $d^{\prime}=d$.
Solution. Because d is a divisor of both a and b, it follows that $d^{\prime} \geq d$. In addition, $d^{\prime} \mid a$ and $d^{\prime} \mid b$, so $d^{\prime} \in A$. Thus $d \geq d^{\prime}$. The only way both inequalities can hold is if $d=d^{\prime}$. Therefore there is only one greatest common divisor.

Theorem 1. Let $a \in \mathbb{Z}$. The following are equivalent:
(1) a is even;
(2) $a-1$ and $a+1$ are both odd;
(3) $a^{2}-1$ is odd.
2. Prove Theorem 1 by showing that $1 \Longrightarrow 2 \Longrightarrow 3 \Longrightarrow 1$.

Solution. Let $a \in \mathbb{Z}$.
$(1 \Longrightarrow 2)$. Suppose a is even. By definition $a=2 n$ for some $n \in \mathbb{Z}$. Hence $a+1=2 n+1$, which is odd by definition. It also follows that $a-1=2 n-1=2(n-1)+1$, which is also odd. Therefore both $a+1$ and $a-1$ are odd.
$(2 \Longrightarrow 3)$. Suppose $a+1$ and $a-1$ are both odd. We know that the product of two odd numbers is again odd. Therefore $(a-1)(a+1)=a^{2}-1$ is odd.
$(3 \Longrightarrow 1)$. We prove the contrapositive: if a is odd, then $a^{2}-1$ is even. Suppose a is odd. By definition there is an integer n such that $a=2 n+1$. Then

$$
\begin{aligned}
a^{2}-1 & =(2 n+1)^{2}-1 \\
& =4 n^{2}+4 n+1-1 \\
& =2\left(2 n^{2}+2 n\right) .
\end{aligned}
$$

Therefore $a^{2}-1$ is even.

