EXISTENCE PROOFS AND EQUIVALENCES

1. Let $a, b \in \mathbb{N}$. Our goal is to prove that a and b have a unique greatest common divisor. More precisely, we'll show that there is a unique integer d such that d divides both a and b and if c is an integer that also divides both a and b, then $c \leq d$. In mathematics:

$$
\exists!d \in \mathbb{Z}, d|a \wedge d| b \wedge(\forall c \in \mathbb{Z}, \quad(c|a \wedge c| b) \Longrightarrow c \leq d)
$$

Proof. Let $a, b \in \mathbb{N}$. Let $A=\{x \in \mathbb{Z}: x \mid a$ and $x \mid b\}$. If $n \in A$, then $n \mid a$, and thus $n \leq a$. It follows that if A has any elements at all, then it has a greatest element.
a) Prove that $A \neq \emptyset$.
b) Let d be the greatest element of A. Prove that $d=\operatorname{gcd}(a, b)$.
c) Now we prove that d is unique. Suppose that d^{\prime} is an integer that divides both a and b and that d^{\prime} is greater than or equal to all other divisors of both a and b. Show that $d^{\prime}=d$.

Theorem 1. Let $a \in \mathbb{Z}$. The following are equivalent:
(1) a is even;
(2) $a-1$ and $a+1$ are both odd;
(3) $a^{2}-1$ is odd.
2. Prove Theorem 1 by showing that $1 \Longrightarrow 2 \Longrightarrow 3 \Longrightarrow 1$.

