PROOF AND DISPROOF

1. Prove or disprove the statements:

a)
$$\forall x, y \in \mathbb{R}, \ (x+y)^2 = x^2 + y^2$$

Solution. The statement is false. A counterexample: x = 1 and y = 1.

b)
$$\forall x, y \in \mathbb{R}, (x+y)^2 \neq x^2 + y^2$$

Solution. The statement is false. A counterexample: x = 0 and y = 0.

2. Let $a, b \in \mathbb{Z}$. Prove or disprove the statement: If $a|b^2$, then a|b.

Solution. The statement is false. A counterexample: a = 4 and b = 2.

3. Let A, B, and C be sets. Prove or disprove the statement: If $C \subseteq B$, then $(A - B) \subseteq (A - C)$.

Solution. The statement is true. Proof: Let A, B, and C be sets such that $C \subseteq B$. Let $x \in A - B$. By definition $x \in A$ and $x \notin B$. Because $C \subseteq B$, it follows that $x \notin C$. We now know that $x \in A$ and $x \notin C$. Hence $x \in A - C$. Therefore $(A - B) \subseteq (A - C)$.

Date: October 19, 2018.