## INDUCTION I

1. Fill in the missing steps of the following proof.

Theorem. $1+2+4+\cdots+2^{n}=2^{n+1}-1$ for every $n \in \mathbb{N}$.

Proof (by induction on $n$ ). Base case: $n=1$. Then
Inductive step. Suppose $k \in \mathbb{N}$ and $1+2+4+\cdots+2^{k}=2^{k+1}-1$. Then

$$
1+2+4+\cdots+2^{k+1}=\left(1+2+4+\cdots+2^{k}\right)+2^{k+1}
$$

Therefore, by induction, $1+2+4+\cdots+2^{n}=2^{n+1}-1$ for every $n \in \mathbb{N}$.
2. Use induction (on $n$ ) to prove that for all $n \in \mathbb{N}, 3^{n} \geq 1+2^{n}$.
3. Use induction (on $n$ ) to prove de Moivre's formula: for all $n \in \mathbb{N}$ and all $x \in \mathbb{R}$

$$
(\cos x+i \sin x)^{n}=\cos (n x)+i \sin (n x)
$$

(where $i=\sqrt{-1}$ ). You might need to use the following trig identities:

$$
\begin{aligned}
\cos (a+b) & =\cos a \cos b-\sin a \sin b \\
\sin (a+b) & =\sin a \cos b+\cos a \sin b
\end{aligned}
$$

Challenge. Prove that for all $n \in \mathbb{N}, 8 \mid\left(5^{2 n}-1\right)$.

