INDUCTION II ... AND RELATIONS

1. Find the flaw in the following proof.

Theorem. If $n \in \mathbb{N}$, then n is odd
Proof by strong induction. Base case: $n=1$. Then n is clearly odd.
Now suppose that $k \in \mathbb{N}$ and that if $l \in \mathbb{N}$ and $l \leq k$, then l is odd. Consider that $k+1=(k-1)+2$ and that $k-1 \leq k$. By IH $k-1$ is odd. Hence $k-1=2 a+1$ for some integer a. We now have

$$
\begin{aligned}
k+1 & =(k-1)+2 \\
& =(2 a+1)+2 \\
& =2(a+1)+1 .
\end{aligned}
$$

Since $a+1$ is an integer, we have shown that $k+1$ is odd.
Therefore, by strong induction, every natural number is odd.
2. Complete any necessary bases cases in the following proof.

Theorem. If $n \in \mathbb{N}$, then $12 \mid\left(n^{4}-n^{2}\right)$.
Proof by strong induction. We will defy tradition and begin with the inductive step. Let $k \in \mathbb{N}$ and suppose that if $l \in \mathbb{N}$ and $l \leq k$, then $12 \mid\left(l^{4}-l^{2}\right)$. We wish to prove that $12 \mid\left((k+1)^{4}-(k+1)^{2}\right)$.

Let $l=k-5$. Then $l \leq k$, so by IH $12 \mid\left(l^{4}-l^{2}\right)$. Hence there is an integer a such that $l^{4}-l^{2}=12 a$. Then

$$
\begin{aligned}
(k+1)^{4}-(k+1)^{2} & =(l+6)^{4}-(l+6)^{2} \\
& =l^{4}+24 l^{3}+216 l^{2}+864 l+1296-\left(l^{2}+12 l+63\right) \\
& =\left(l^{4}-l^{2}\right)+24 l^{3}+216 l^{2}+852 l+1260 \\
& =12 a+24 l^{3}+216 l^{2}+852 l+1260 \\
& =12\left(a+2 l^{3}+18 l^{2}+71 l+105\right) .
\end{aligned}
$$

It follows that $12 \mid\left((k+1)^{4}-(k+1)^{2}\right)$.
We now must establish the base cases to complete the proof.

Definition. Let R be a relation on a set A.

- R is reflexive if $\forall x \in A, x R x$.
- R is symmetric if $\forall x, y \in A, x R y \Longrightarrow y R x$.
- R is transitive if $\forall x, y, z \in A,(x R y \wedge y R z) \Longrightarrow x R z$.

3. Which of the three properties in the definition does the relation of $<$ (on \mathbb{R}) have?
4. Which of the three properties in the definition does the relation of divides (on \mathbb{Z}) have?
5. Which of the three properties in the definition does the relation of congruence modulo 5 (on \mathbb{Z}) have?
