BIJECTIONS AND CARDINALITIES

If there is a bijection between sets A and B, then the sets must be the same size. This turns out to give a good definition of the size of a set.

Definition. Let A and B be sets. Then we say A and B have the same **cardinality** and write |A| = |B| if there is a bijection between A and B.

Example. Let $A = \{a, b, c\}$ and let $B = \{1, 2, 3\}$. Then there is a bijection between A and B, for example $\{(a, 1), (b, 2), (c, 3)\}$. Thus |A| = |B| by the definition above.

The definition works nicely for finite sets. Things get a little stranger when dealing with infinite sets.

- **1.** Let $A = \{2n : n \in \mathbb{Z}\}$ and $B = \{2n + 1 : n \in \mathbb{Z}\}$. Follow the model of the example above to establish that:
 - a) |A| = |B|

b) $|A| = |\mathbb{Z}|$

c) $|\mathbb{N}| = |\mathbb{Z}|$

Date: November 19, 2018.

Theorem (Shröder-Bernstein). Let A and B be sets. If there is an injective function from A to B and another injective function from B to A, then there is a bijection between A and B.

- **2.** We can use the Shröder-Bernstein theorem to prove that $|\mathbb{Z}| = |\mathbb{Q}|$. We just need to:
 - a) Produce an injective function from \mathbb{Z} to \mathbb{Q} .
 - b) Produce an injective function from \mathbb{Q} to \mathbb{Z} .

3. Prove that $|\mathbb{N}| = |\mathbb{Q}|$.

4. Do you think all infinite sets have the same cardinality?