BIJECTIONS AND CARDINALITIES

If there is a bijection between sets A and B, then the sets must be the same size. This turns out to give a good definition of the size of a set.
Definition. Let A and B be sets. Then we say A and B have the same cardinality and write $|A|=|B|$ if there is a bijection between A and B.

Example. Let $A=\{a, b, c\}$ and let $B=\{1,2,3\}$. Then there is a bijection between A and B, for example $\{(a, 1),(b, 2),(c, 3)\}$. Thus $|A|=|B|$ by the definition above.

The definition works nicely for finite sets. Things get a little stranger when dealing with infinite sets.

1. Let $A=\{2 n: n \in \mathbb{Z}\}$ and $B=\{2 n+1: n \in \mathbb{Z}\}$. Follow the model of the example above to establish that:
a) $|A|=|B|$
b) $|A|=|\mathbb{Z}|$
c) $|\mathbb{N}|=|\mathbb{Z}|$

Theorem (Shröder-Bernstein). Let A and B be sets. If there is an injective function from A to B and another injective function from B to A, then there is a bijection between A and B.
2. We can use the Shröder-Bernstein theorem to prove that $|\mathbb{Z}|=|\mathbb{Q}|$. We just need to:
a) Produce an injective function from \mathbb{Z} to \mathbb{Q}.
b) Produce an injective function from \mathbb{Q} to \mathbb{Z}.
3. Prove that $|\mathbb{N}|=|\mathbb{Q}|$.
4. Do you think all infinite sets have the same cardinality?

