
Proposition 1. Let x ∈ R. If x > 0, then x+
1

x
≥ 2.

Proof. Proof by contradiction. Assume, by contradiction, that x is a real number where x > 0 and
x + (1/x) < 2. By subtracting 2 from both sides we get x + (1/x) − 2 < 0, which can also be written as
(x2 + 1−2x)/x < 0. This is equal to (x−1)2/x < 0. Multiplying both sides by x we get (x−1)2 < 0. This
is a contradiction, as (x− 1)2 ≥ 0 for every real number x > 0. Therefore if x > 0, then x+ (1/x) ≥ 2. �
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Proposition 1. Let x ∈ R. If x > 0, then x+
1

x
≥ 2.

Proof. Suppose, by way of contradiction, that x > 0 and x+
1

x
< 0.

Then, by placing both expressions over a common denominator
x2 + 1

x
< 0.

Hence x2 + 1 < 0.
Since x > 0, x2 + 1 cannot be negative, so this statement is a contradiction.

Therefore, x+
1

x
≥ 0. �

Comments:



Proposition 1. Let x ∈ R. If x > 0, then x+
1

x
≥ 2.

Proof. Let x be a real number and suppose x is greater than 0. Multiplying by x on both sides of the
equation, x+ 1

x
is greater than or equal to 2, yields, x2 + 1 is greater than or equal to 2x. Subtracting 2x

from one side of the equation then reveals, x2 − 2x + 1 is greater than or equal to 0. Then factoring this
equation simplifies it to, (x − 1)2 is greater than or equal to 0. The value of x may be any real number
greater than 0, meaning the only equality is found at x = 1, and every other possible real number is
allowed. Therefore, x+ 1

x
is greater than or equal to 2.

Let x be a real number and suppose x is greater than 0. Multiplying by x on both sides of the equation,
x+ 1

x
≥ 2, yields, x2 + 1 ≥ 2x. Subtracting 2x from one side of the equation then reveals, x2− 2x+ 1 ≥ 0.

Then factoring this equation simplifies it to, (x− 1)2 ≥ 0. The value of x may be any real number greater
than 0, meaning the only equality is found at x = 1, and every other possible real number is allowed.
Therefore, x+ 1

x
≥ 2. �
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Proposition 1. Let x ∈ R. If x > 0, then x+
1

x
≥ 2.

Proof. Let x ∈ R and suppose x > 0. Consider the quantity (x − 1). We know that (x − 1) is negative
when 0 < x < 1, 0 when x = 1, and positive when x > 1. It then follows that (x − 1)2 ≥ 0. Hence
x2 − 2x+ 1 ≥ 0. And x2 + 1 ≥ 2x. Then, you can divide both sides by x without flipping the direction of
the inequality since x is strictly positive, resulting in x+ 1

x
≥ 2. Therefore, x+ 1

x
≥ 2. �

Comments:



Proposition 2. Suppose a ∈ Z. If a is odd, then 8 | (a2 − 1).

Proof. Assume a is odd. Since a is odd a = 2k + 1, k ∈ Z. So a2 − 1 = (2k + 1)2 − 1 = 4k2 + 4k =
4(k2 +k) = 4(k(k+ 1)). By definition one of k and k+ 1 is even and one is odd. Thus the product k(k+ 1)
is even. Because k(k + 1) is even it is divisible by two so we can write it as 2k(k + 1)/2, and it is still an
integer. We get that 8|(4 ∗ 2k(k + 1)/2). Therefore 8 ∗ (k(k + 1)/2 = (4 ∗ 2k(k + 1)/2) so by definition
8|(a2 − 1). �

Comments:

Proposition 2. Suppose a ∈ Z. If a is odd, then 8 | (a2 − 1).

Proof. Let a ∈ Z. Suppose a is odd. By definition of odd, there exists an integer c such that a = 2c + 1.
By definition of divides, there exists an integer d such that 8d = (a2 − 1).

a2 − 1 = (2c+ 1)2 − 1 = 4c2 + 4c+ 1− 1 = 4c2 + 4c = 4c(c+ 1)

So, c(c + 1) is an even integer. Using the definition of divides, a2 − 1 = 4 ∗ 2 ∗ c(c + 1)/2. Therefore,
8|(a2 − 1). �

Comments:



Proposition 2. Suppose a ∈ Z. If a is odd, then 8 | (a2 − 1).

Proof. Let n ∈ Z, and suppose that n is odd. By definition (of odd) there is an integer k such that
n = 2k + 1. Hence n2 − 1 = (2k + 1)2 − 1 = (4k2 + 4k + 1) − 1 = 4k2 + 4k = 4(k2 + k). Consider the
following two cases:

Case 1. k is even: Then there is c ∈ Z such that k = 2c. Then k2 = (2c)2 = 4c2 = 2(2c2). So
k2 + k = 2(2c2) + 2c = 2(2c2 + c), which is even.

Case 2. k is odd: Then there is t ∈ Z such that k = 2t + 1. Then k2 = (2t + 1)2 = 4t2 + 4t + 1. So
k2 + k = (4t2 + 4t+ 1) + (2t+ 1) = 4t2 + 6t+ 2 = 2(2t2 + 3t+ 1), which is even.

In either case, k2 + k is even. By definition (of even) there is an integer s such that k2 + k = 2s.
Remember: n2− 1 = 4(k2 +k). By substitution we have n2− 1 = 4(2s) = 8s. Since s ∈ Z, then 8|(n2− 1).
Therefore if n is odd, then 8|(n2 − 1). �

Comments:

Proposition 2. Suppose a ∈ Z. If a is odd, then 8 | (a2 − 1).

Proof. Suppose a ∈ Z and a is odd. Since a is odd, there exists a c ∈ Z such that a = 2c + 1 by definition.
Therefore, a2 = (2c+ 1)2 = 4c2 + 4c + 1 = 4(c2 + c) + 1. Then, 8 | 4(c2 + c) + 1 - 1, so then 2 | c2 + c.
Since a is odd and a = 2c + 1, then c must be even. Since c is even, then c2 must be even. Since c and c2

are both even, then 2 | c2 + c by definition. Therefore, 8 | (a2 - 1) �

Comments:



Proposition 2. Suppose a ∈ Z. If a is odd, then 8 | (a2 − 1).

Proof. Let a be an integer and suppose a is odd. If a is odd, then by definition of odds there is an integer
c such that a = 2c+ 1. Substituting this into 8|(a2− 1) we get 8|((2c+ 1)2− 1) = 8|((4c2 + 4c+ 1)− 1) =
8|(4c(c + 1)). Where c(c + 1) is the product of two consecutive integers which is the product of an odd
and an even. And in class we proved the product of an odd and an even to be even. Then by definition
of evens, there exists an integer n such that c(c + 1) = 2n. Substituting that into 8|(4c(c + 1)), we get
8|(4(2n)) = 8|8n. We know that an integer divides multiples of itself, therefore, 8 divides (a2 − 1) when a
is odd. �

Comments:

Proposition 2. Suppose a ∈ Z. If a is odd, then 8 | (a2 − 1).

Proof. Let a be an integer, and suppose a is odd. By definition of odd numbers, a equals 2c + 1, where
c is an integer. Then, (a2 − 1) = (2c + 1)2 − 1 = 4c2 + 4c = 2(2c2 + 2c). Thus, by definition, and where
2c2 + 2c is an integer, a2 is even. Also by definition there is an integer d such that 8d = a2 − 1. Thus,
8|(a2 − 1) �

Comments:



Proposition 2. Suppose a ∈ Z. If a is odd, then 8 | (a2 − 1).

Lemma 1. k2 has the same parity as k for all k ∈ Z

Proof. Let k ∈ Z
Case 1: k is odd

By the definition of odd, k = 2n+ 1, n ∈ Z It follows that

k2 = (2n+ 1)(2n+ 1)

k2 = 4n2 + 4n+ 1

k2 = 2(2n2 + 2n) + 1

Since (2n2 + 2n) ∈ Z, k2 is odd by the definition of odd.

Case 2: k is even
By the definition of even, k = 2n, n ∈ Z It follows that

k2 = (2n)(2n)

k2 = 4n2

k2 = 2(2n2)

Since (2n2) ∈ Z, k2 is odd by the definition of even.
By Case 1 and Case 2, ∀k ∈ Z : k2 and k have the same parity �

Lemma 2. k2 + k is even for all k ∈ Z

Proof. Let k ∈ Z Case 1: k is even
It follows that k2 is even by the proof that k2 and k have the same parity ??. So by the definition of

even, k = 2n, k2 = 2mn,m ∈ Z It follows that

k2 + k = 2m+ 2n

k2 + k = 2(m+ n)

Since (m+ n) ∈ Z, k2 + k is even when k is even
Case 2: k is odd

It follows that k2 is odd by the proof that k2 and k have the same parity ??. So by the definition of
even, k = 2n+ 1, k2 = 2m+ 1n,m ∈ Z It follows that

k2 + k = 2m+ 1 + 2n+ 1

k2 + k = 2m+ 2n+ 2

k2 + k = 2(m+ n+ 1)

Since (m+ n+ 1) ∈ Z, k2 + k is even when k is odd
By Case 1 and Case 2, k2 + k is odd ∀k ∈ Z �

Proof. let a ∈ Z Suppose (by way of contradiction) 8 does not divide a2− 1 and a is odd So, 6 ∃c ∈ Z : 8c =
a2 − 1 by the definition of divides and a = 2k + 1 by the definition of odd.
It follows that a2 − 1 = (2k + 1)(2k + 1)− 1 and thus, a2 − 1 = 4k2 + 4k, so a2 − 1 = 4(k2 − k). It follows
from previous work in proving Lemma ??, that k2 − k is even for all k ∈ Z, so by the definition of even,
a2 − 1 = 4(2(j)) for some j ∈ Z. So, a2 − 1 = 8j, and thus by the definition of divides, 8|a2 − 1, but
this contradicts our assumption that 8 does not divide a2 − 1 when a is odd, therefore 8|a2 − 1 when a is
odd. �
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(continue on the reverse)



Proposition 2. Suppose a ∈ Z. If a is odd, then 8 | (a2 − 1).

Proof. Let some integer a be odd. We know, by the Division Algorithm, that there exist unique integers
q and r such that a = 4q + r where 0 ≤ r < 4. When r is 0, a = 4q = 2(2q) and when r is 2, a = 4q + 2 =
2(2q + 1). Hence, a is even whenever r = 0 or r = 2. However, when r = 1, a = 4q + 1 = 2(2q) + 1 and
when r = 3, a = 4q+ 3 = 2(2q+ 1) + 1. So, a is odd whenever r = 1 or r = 3. And since we are assuming
that a is odd, we can uniquely express a as a = 4q + r with r = 1 or r = 3.
We will now consider a2 − 1 for the two cases.

Case 1. r = 1
When r = 1, a = 4q + 1. It follows that a2 − 1 = (4q + 1)2 − 1 = 16q2 + 8q + 1− 1 = 16q2 + 8q. But an 8
can be factored out of that equation, so a2 − 1 = 8(2q2 + q). And since 2q2 + q is an integer, by definition
8|(a2 − 1).

Case 2. r = 3
When r = 3, a = 4q + 3. Consequently, a2 − 1 = (4q + 3)2 − 1 = 16q2 + 24q + 9− 1 = 16q2 + 24q + 8. But
an 8 can be factored out of that equation, so a2− 1 = 8(2q2 + 3q+ 1). And since 2q2 + 3q+ 1 is an integer,
by definition 8|(a2 − 1).

8|a2 − 1 in both cases. Therefore, if a is odd, then 8 | (a2 − 1). �

Comments:



Proposition 2. Suppose a ∈ Z. If a is odd, then 8 | (a2 − 1).

Proof. Suppose a ∈ Z. Let a be odd. By definition, a = 2b+1 for some b ∈ Z. Then, a2−1 = (2b+1)2−1 =
4b2 + 4b+ 1− 1 = 4b(b+ 1). Because b could be either odd or even, we need two cases to look at.
Case 1: Let b be odd. By definition, b = 2c + 1 for some c ∈ Z. Then, b + 1 = 2c + 1 + 1 = 2c + 2 is
even. It follows that 2c+ 2 = 2d for d = c+ 2. Therefore, a2 − 1 = 4b(b+ 1) = 4b(2c+ 2) = 4b(2d) = 8bd.
Consequently, 8 divides a2 − 1.
Case 2: Let b be even. By definition, b = 2n for some n ∈ Z. Then, a2 − 1 = 4b(b + 1) = 4(2n)(b + 1) =
8n(b+ 1). Therefore, 8 divides a2 − 1.
Since 8 divides a2 − 1 in both cases, it is true that 8 divides a2 − 1 for all a ∈ Z. �
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Lemma 3. Let a, b ∈ Z. If a and b have opposite parity, then ab is even (this was proved in class).

Proposition 2. Suppose a ∈ Z. If a is odd, then 8 | (a2 − 1).

Proof. Let a be an integer and suppose a is odd.
By definition, there is an integer b such that a = 2b+ 1
Then, a2 − 1 = (2b+ 1)2 − 1 = 4b2 + 4b+ 1− 1 = 4b2 + 4b = 4(b2 + b) = 4(b)(b+ 1).
Because b ∈ Z, we know that either b or b+ 1 is even, and we know that the product of an even and odd
integer is even.
Thus, by definition, there is an integer c such that (b)(b+ 1) = 2c, so a2− 1 = 4(2c) = 8c. We can see that
8|8c. Therefore, 8|(a2 − 1). �

Comments:



Proposition 2. Suppose a ∈ Z. If a is odd, then 8 | (a2 − 1).

Proof. Let aεZ, and suppose a is odd. By definition of odd, ∃mεZ such that 2m + 1 = a. It follows that
a2 − 1 = ((2m + 1) + 1)((2m + 1) − 1) = (2m + 2)(2m). This can be written as 4m2 + 4m, and factored
as 4m(m+ 1). From here, there are 2 cases we need to consider.
Case 1: Suppose m is odd. By definition of odd, ∃xεZ such that 2x + 1 = m. It follows that m + 1 =
(2x+ 1) + 1 = 2x+ 2 = 2(x+ 1), and since 2|(2(x+ 1)), we know that m+ 1 is even. This means that the
quantity m(m+ 1) must then also have 2 as a factor, so we know that 2|(m+ 1).
Case 2: Suppose m is even. By definition of even, 2|m, so by similar logic, we know that 2|(m(m+ 1)).
In either case, 2|(m(m+1)). By multiplication of 4, we can see that 8|(4m(m+1)). Therefore 8|(a2−1). �

Comments:

Proposition 2. Suppose a ∈ Z. If a is odd, then 8 | (a2 − 1).

Proof. Suppose that a is an odd integer. By definition of odd, there is an integer n such that a = 2n + 1
Consider a2 − 1 = (2n + 1)2 − 1. This statement can be simplified to a2 − 1 = 4n(n + 1). Since n and
n+ 1 are two consecutive integers, it follows that one must be odd and one must be even. Due to this, it
follows that 4n(n+ 1) is divisible by 8, as the divisors 4 and 2 must be present. Therefore by definition of
odd and divides, if a is odd, then 8 | (a2 − 1). �

Comments:



Proposition 2. Suppose a ∈ Z. If a is odd, then 8 | (a2 − 1).

Proof. Let a ∈ Z and suppose a is odd. By definition, there is an integer x for which a = 2x + 1. Then
a2 = 4x2 +4x+1. Thus a2−1 = 4x2 +4x. So a2−1 = 4(x)(x+1). Since x and x+1 have opposite parity,
the product of x and x+1 is even too*. Then by definition, there is an integer y for which (x)(x+1) = 2y.
Hence a2 − 1 = 4(2y). Thus a2 − 1 = 8y. Therefore, 8|(a2 − 1).

�
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