
Proposition 2. If a ∈ Z , then 4 - (a2 − 3)

Proof. Because a ∈ Z, a could be either odd or even, so we need multiple cases.
Case 1: a is odd. By definition, there exists b ∈ Z such that a = 2b+ 1. It follows that a2 = (2b+ 1)2 =

4b2 + 4b + 1. Then, a2 ≡ 1 mod 4 and 3 ≡ 3 mod 4. As we can see, a2 and 3 do not have the same
congruence class (mod 4). So, a2 does not have the same congruence class as 3 (mod 4). Thus, 4 - a2 − 3.

Case 2: a is even. By definition, there exists c ∈ Z such that a = 2c. Consequently, a2 = (2c)2 = 4c2.
Using modular congruence, we can see that a2 ≡ 0 mod 4 and 3 ≡ 3 mod 4 We can see that a2 and 3 do
not have the same congruence class (mod 4). So, a2 does not equal 3 (mod 4). Thus, 4 - a2 − 3.

As we can see in both cases, 4 - a2 − 3. Therefore, we can conclude that no matter the parity of a,
4 - a2 − 3.

�
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Lemma 1. If a ∈ Z, then a2 ∈ Z

Proposition 2. If a ∈ Z, then 4 - (a2 − 3).

Proof. Suppose 4|(a2 − 3) by contradiction. This means that there exists b ∈ Z such that a2 − 3 = 4b by
definition. This then brings up 2 cases:
Case 1: Suppose a ∈ Z and a is even. Since a is even, then there exists c ∈ Z such that a = 2c by
definition. So then, (2c)2− 3 = 4b, thus 4c2− 3 = 4b, and then 4(c2− b) = 3. It continues that c2− b = 3

4
,

and finally b = c2 − 3
4
. Since c ∈ Z, then c2 ∈ Z by Lemma 1. Also, 3

4
/∈ Z by the definition of an integer,

then it follows that b /∈ Z. This is a contradiction of the assumption that b ∈ Z, so 4 - (a2 − 3) when a is
even.
Case 2: Suppose a ∈ Z and a is odd. Since a is odd, then there exists d ∈ Z such that a = 2d + 1 by
definition. So then (2d + 1)2 − 3 = 4b, and then 4d2 + 4d − 2 = 4b, thus 2d2 + 2d − 1 = 2b. It continues
that 2(d2 + d − 1

2
) = 2b, and finally d2 + d − 1

2
= b. Since d ∈ Z, then d2 ∈ Z by Lemma 1. Therefore,

d2 + d ∈ Z. Also, 1
2
/∈ Z by the definition of an integer, then it follows that b /∈ Z. This is a contradiction

of the assumption that b ∈ Z, so 4 - (a2 − 3) when a is odd.
Conclusion: Since 4 - (a2 − 3) when a is either even or odd, therefore 4 - (a2 − 3) when a ∈ Z. �
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Theorem 2. If a ∈ Z, then 4 - (a2 − 3).

Proof. For the sake of contradiction, assume that a ∈ Z and 4 | (a2−3). By the definition of divides, there
exists some integer k such that, 4k = a2 − 3. This can be broken into two cases in which a is odd or a is
even.

Case 1. a is odd. By the definition of odd, there exists some integer i such that, a = 2i + 1. Using this
value in 4k = a2 − 3 we find, 4 = (2i + 1)2 − 3. This can then be written as, 4k = 4i2 + 4i − 2. Then
factoring out a 4 shows, k = i2 + i− 1

2
. However, i2 + i is an integer but, 1

2
is rational. So, i2 + i− 1

2
is not

an integer. This contradicts that k is an integer.

Case 2. a is even. By the definition of even, there exists some integer n such that, a = 2n. Using this
value in 4k = a2 − 3 we find, 4 = (2n)2 − 3. This can then be written as, 4k = 4n2 − 3. Then factoring
out a 4 shows, k = n2 − 3

4
. However, n2 is an integer but, 3

4
is rational. So, n2 − 3

4
is not an integer. This

contradicts that k is an integer.

Therefore by contradiction, 4 - (a2 − 3) for all a ∈ Z. �
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Proposition. If a ∈ Z, then 4 6 | (a2 − 3).
Proof by contradiction. Assume that 4|(a2 − 3) for some a ∈ Z. Then by definition, 4n = (a2 + 3) for

some integer n. We then have to consider two cases.
Case 1: Consider than a is even. Then by definition, there exists an integer k such that a = 2k. So

4n = (2k)2 + 3 which can also be written as 4n = 4k2 − 3. Thus n = k2 − 3
4
. Since, 3

4
is not an integer, n

is not an integer. This is a contradiction.
Case 2. Consider that a is odd. Then by definition, there exists an integer m such that a = 2m + 1. So

4n = (2m + 1)2 + 3 = (4m2 + 4m + 1)− 3 = 4m2 + 4m− 2. Dividing by 4, we get n = m2 + m− 1
2
. Since

1
2

is not an integer, n is not an integer. This is a contradiction.
Therefore, if a ∈ Z, then 4 6 | (a2 − 3).
�
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Proposition 2. Let a ∈ Z, if a ∈ Z, then 4 6 |a2 − 3

∀a ∈ Z, 6 ∃c : 4c = a2 − 3

Definition 1 (Divides). Let a, b ∈ Z
a divides b, written a|b, if there is c ∈ Z such that ac = b.

Definition 2 (Even). Let a ∈ Z
a is even if a = 2(k) for some k ∈ Z

Definition 3 (Odd). Let a ∈ Z
a is odd if a = 2(k) + 1 for some k ∈ Z

Proof. let a ∈ Z Suppose that 4|a2 − 3, so ∃c ∈ Z : 4c = a2 − 3 by the definition of divides (Definition 1).
Case 1: Let a be odd, then by the definition of odd (Definition 3), a = 2k + 1, k ∈ Z It follows that
a2 − 3 = (2k + 1)(2k + 1)− 3 = 4k2 + 4k− 2. If 4|a2 − 3, 4c = 4k2 + 4k− 2, and 4c = 2(2(k2 − k)− 1), so
2c = 2(k2 − k)− 1 so c = k2 − k − 1/2. Furthermore, because the integers are closed under multiplication
and subtraction, (k2 − k) ∈ Z. Because 1/2 is a rational number and not an integer, 4 6∈ Z and therefore
c 6 |a2 − 3 when a is odd by the definition of divides (Definition 1).
Case 2: Let a be odd, then by the definition of even (Definition 2), a = 2k, k ∈ Z It follows that
a2 − 3 = (2k)2 − 3 = 4k2 − 3. If 4|a2 − 3, 4c = 4k2 − 3, and c = k2 − 3/4. Since integers are closed under
multiplication, k2 ∈ Z. Because 3/2 is a rational number and not an integer, c 6∈ Z and therefore 4 6 |a2− 3
when a is even by the definition of divides (Definition 1).
By Case 1 and Case 2, 4 6 |a2 − 3 when a is odd or when a is even, but this contradicts our assumption
that ∃a ∈ Z : 4|a2 − 3 so if a ∈ Z, then 4 6 |a2 − 3 �
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Proposition 2. If x ∈ Z then 4 - (a2 − 3).

Proof. Suppose, by way of contradiction, that 4 | (a2 − 3).
By definition ∃m ∈ Z such that 4m = a2 − 3.

Case 3. a is even.
By definition, ∃k ∈ Z such that a = 2k.
Then

(2k)2 − 3 = 4m

4k2 − 3 = 4m

k2 −
3

4
= m

Since
3

4
6∈ Z, k2 −

3

4
6∈ Z, which is a contradiction since m ∈ Z.

Case 4. a is odd.
By definition, ∃k ∈ Z such that a = 2k + 1.
Then

(2k + 1)2 − 3 = 4m

4k2 + 4k + 1− 3 = 4m

4k2 + 4k − 2 = 4m

k2 + k −
1

2
= m

Hence k2 + k ∈ Z due to integers being closed under addition, but
1

2
6∈ Z, so k2 + k −

1

2
6∈ Z, which is a

contradiction since m ∈ Z.

Therefore, in both cases contradiction shows if x ∈ Z then 4 - (a2 − 3). �
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Proposition 2. If a ∈ Z, then 4 - (a2 − 3).

Proof. We will prove this by contradiction. Let a ∈ Z and suppose 4 | (a2 − 3). Then, for some integer x,
(a2 − 3) = 4x. We can break this into two cases.
Case 1: a is even.
By definition, there is an integer m where a = 2m. Then (2m)2 − 3 = 4x. Thus 4m2 − 3 = 4x. 4m2 − 3 is
odd because 4m2 must be even and subtracting 3 results in an odd number. 4x is even because 2(2x) and
by the definition of even. This is a contradiction because 4m2 − 3 is odd and 4x is even.
Case 2: a is odd.
By definition, there is an integer n where a = 2n+1. Then (2n+1)2−3 = 4x. Thus 4n2 +4n+1−3 = 4x.
Hence 4n2 + 4n−2 = 4x. Dividing both sides by 4 leads to n2 +n− 1

2
= x. This is a contradiction because

n2 + n− 1
2

cannot be an integer while x is an integer.
Since we proved that 4 - (a2 − 3) for a is even and a is odd, we know that 4 - (a2 − 3) for a beings all
integers. Therefore, 4 - (a2 − 3). �

Comments:



Theorem 2. If a ∈ Z, then 4 6 |(a2 − 3).

Lemma 2. Let a ∈ Z a2 is odd if and only if a is odd (this was proved in class).

Proof. Let a ∈ Z and suppose, by way of contradiction, that 4|(a2 − 3).
By definition, there exists b ∈ Z such that 4b = a2 − 3
This is equivalent to a2 = 4b+3 = 4b+2+1 = 2(2b+1)+1. Because b ∈ Z, we can see that 2(2b+1)+1

is odd, and thus a2 is odd. By Lemma 1, we can see that a is odd.
By definition, there exists c ∈ Z such that a = 2c + 1. Substituting a = 2c + 1 in the above equation,

we can see that 0 = a2 − 4b− 3 = (2c + 1)2 − 4b− 3 = 4c2 + 4c + 1− 4b− 3 = 4c2 + 4c− 4b− 2.
From this, we can see that 2 = 4c2 + 4c− 4b and 1 = 2c2 + 2c− 2b = 2(c2 + c− b). Because b, c ∈ Z we

can see that 2(c2 + c− b) is even. This is a contradiction because 1 is odd.
Therefore, we can see 4 6 |(a2 − 3). �
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Proposition 2. If a ∈ Z, then 4 - (a2 − 3).

Proof. Let a ∈ Z, and let’s consider the following cases:

Case 5. a is even. Then there is k ∈ Z such that a = 2k.
Then a2 − 3 = (2k)2 − 3 = 4k2 − 3 ≡ −3(mod4) ≡ 1(mod4).

Case 6. a is odd: Then there is k ∈ Z such that a = 2k + 1.
Then a2 − 3 = (2k + 1)2 − 3 = 4k2 + 4k − 2 ≡ −2(mod4) ≡ 2(mod4).

In either case, a2 − 3 6≡ 0(mod4). Therefore 4 - (a2 − 3).
�
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Proposition 2. If a ∈ Z, then 4 - (a2 − 3).

Proof. Let a ∈ Z. Assume, by contradiction, that 4|(a2 − 3). Then there exists an integer b such that
4b = a2 − 3.

First, let a be even. Since a is even, there exists an integer k such that a = 2k. So

(2k)2 − 3 = 4b

4k2 − 3 = 4b

k2 − 3

4
= b

So k2 is an integer but since 3
4

is rational, k2 − 3
4

is not an integer and thus a contradiction.
Next, let a be odd. Since a is odd, there exists an integer k such that a = 2k + 1. So

a2 − 3 = 4b

(2k + 1)2 − 3 = 4b

4k2 + 4k + 1− 3 = 4b

2k2 + 2k − 1 = 2b

k2 + k − 1

2
= b

So k2 +k is an integer. And since 1
2

is rational, k2 +k− 1
2

which is a contradiction. Therefore, 4 6 |(a2−3)
for any integer. �
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Proposition 5. If a is an integer, then 4 does not divide 2(2c2 + 2c− 1).

Proof. Suppose a is an integer. As such, a can be odd or even.
Suppose a is even. By definition, a = 2c, where c is an integer. It follows that a2 − 3 = 4c2 − 3. Here, 4

does not divide 4c2 − 3.
Suppose a is odd. By definition, a = 2c + 1, where c is an integer. Then, a2 − 3 = 4c2 − 4c − 2 =

2(2c2 + 2c− 1). Here, 4 also cannot divide 2(2c2 + 2c− 1).
Therefore, 4 does not divide 2(2c2 + 2c− 1). �
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Proposition 3. For any natural numbers a and b, a = lcm(a, b) if and only if b|a.

Proof. First we prove that if a = lcm(a, b), then b|a. Suppose a = lcm(a, b). Since a is the lcm, a is a
multiple of both a and b. By definition if a is a multiple of b, b|a.

Now we will show that if b|a, then a = lcm(a, b). Since b|a, a = bn for n ∈ Z. Thus lcm(a, b) = lcm(bn, b).
By definition, the lcm(bn, b) = bn. We have already shown that a = bn. Therefore a = lcm(a, b). �
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Claim 1. 3 For any natural numbers a and b, a = lcm(a, b) if and only b|a

Proof. Since we are proving a biconditional, we need to establish that if b divides a, then a is the least
common multiple of a and b, along with proving that if a is the least common multiple of a and b, then
b divides a. First, we’ll prove the former. Let a and b be natural numbers, and suppose that b divides
a. By definition of division, we know that there exists a natural number, z such that bz = a. It follows
that lcm(a, b) = lcm(bz, b). Since we know that b|bz, and since z is a natural number, therefore bz >= b,
lcm(bz, b) = bz. Therefore, lcm(a, b) = a. Next, we will try to prove that if a = lcm(a, b), then b|a.
Again, let a and b be natural numbers, and suppose a = lcm(a, b). By definition of being a multiple, there
exists natural numbers, j and k, such that lcm(a, b) = aj = bk, both of which are equal to a. Taking the
expression, bk = a, we see that b|a. Therefore a = lcm(a, b) if and only if b|a.

�
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Proposition 3. a = lcm(a,b) if and only if b | a.

Proof. Let a, b ∈ N.
First suppose a = lcm(a,b). By definition, the least common multiple is the smallest positive integer

that is divisible by both a and b. In other words, a divides the least common multiple and b divides the
least common multiple. Since a = lcm(a,b) it follows that a | a and b | a. This proves the statement if a
= lcm(a,b), then b | a.

Conversely suppose, by way of contradiction, that b | a and a 6= lcm(a, b). By definition, there is c ∈ Z
such that bc = a. Since a, b ∈ N, it follows that c ∈ N. Also, since bc = a, we know that b ≤ a. It follows
that lcm(a,b) ≥ a since the least common multiple of two natural numbers must be no less than the greater
of the two numbers. And, since a | a and b | a, it follows that a = lcm(a,b) which is a contradiction. This
proves the statement if b | a, then a = lcm(a,b). �
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Proposition 3. For any natural numbers a and b, a = lcm(a, b) if and only if b | a

Proof. First we show that for natural numbers a, b, if a = lcm(a, b) then b | a. Suppose a = lcm(a, b). By
definition of least common multiple, there exists some natural number k such that a = bk. Observe that
a = bk follows the same form as if b | a. By definition of divides, there exists some natural number k such
that a = bk. Therefore if if a = lcm(a, b) then b | a.

Conversely, suppose that b | a. By definition of divides, there exists some natural number n such that
a = bn. Observe that a = bn takes the form of a = lcm(a, b). By definition of least common multiple,
there exists some natural number b such that a = bn. Therefore, if b | a, then a = lcm(a, b). �

Comments:



Proposition 4. Let C be a circle in R2 centered at (1, 1). Then either (2, 3) /∈ C or (0, 2) /∈ C. (Note
that C is just the circle itself, not the interior).

Proof. Let C be a circle in R2 centered at (1, 1). Note that the two key pieces of information of a circle
in R2 are its center point and its radius. With those two pieces of information, all points of the circle can
be determined. Since we are saying that C is centered at (1, 1), the radius of C is the only thing that can
vary. Also note that we are trying to prove that (2, 3) and (0, 2) can not both be in C at the same time.

If (2, 3) is not a point in C, then clearly it is true that either (2, 3) /∈ C or (0, 2) /∈ C. So, suppose that
(2, 3) is a point in C. The distance between (2, 3) and the center, (1, 1), is the radius of C. Let r represent
the length of the radius of the circle. This variable can be calculated by finding the Euclidean distance
between the points (1, 1) and (2, 3).

r =
√

(x2 − x1)2 + (y2 − y1)2

=
√

(2− 1)2 + (3− 1)2

=
√

12 + 22

=
√

5

So all points in C must be a distance of
√

5 units away from (1, 1) if (2, 3) is a point in C. Let d be the
distance from (1, 1) and (0, 2), and let us calculate d in the same manner.

d =
√

(x2 − x1)2 + (y2 − y1)2

=
√

(0− 1)2 + (2− 1)2

=
√

(−1)2 + 12

=
√

2

Since the distance from (0, 2) to (1, 1) is not
√

5, (0, 2) can not be a point in C while (2, 3) is a point in
C.

Therefore, if C is a circle in R2 centered at (1, 1), then either (2, 3) /∈ C or (0, 2) /∈ C. �
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Proposition 1. Let n ∈ N and n ≥ 2, then n
√

2 is irrational.

Proof. Let n ∈ N and n ≥ 2. Suppose, by way of contradiction, that n
√

2 is rational. Then by definition
of a rational number, there exists a, b ∈ Z, such that n

√
2 = a/b. We may also assume that gcd(a, b) = 1.

Then, n
√

2 = a/b → 2 = an/bn → 2bn = an. Since bn ∈ Z, we can see by definition of evens that an is
even. Since an is even, it follows that a is even. Then there exists an integer c, such that a = 2c. Then
2bn = 2ncn → bn = 2n−1cn. Since n ≥ 2, b is even. This means that a and b are both multiples of 2,
meaning gcd(a, b) ≥ 2. This is a contradiction. �

Definition 4. Let a ∈ Z. a is even if there exists an integer c such that a = 2c.

Definition 5. A real number x is rational if x = a/b for some a, b ∈ Z.
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