Proposition 2. If $a \in \mathbb{Z}$, then $4 \nmid\left(a^{2}-3\right)$
Proof. Because $a \in \mathbb{Z}$, a could be either odd or even, so we need multiple cases.
Case 1: a is odd. By definition, there exists $b \in \mathbb{Z}$ such that $a=2 b+1$. It follows that $a^{2}=(2 b+1)^{2}=$ $4 b^{2}+4 b+1$. Then, $a^{2} \equiv 1 \bmod 4$ and $3 \equiv 3 \bmod 4$. As we can see, a^{2} and 3 do not have the same congruence class $(\bmod 4)$. So, a^{2} does not have the same congruence class as $3(\bmod 4)$. Thus, $4 \nmid a^{2}-3$.

Case 2: a is even. By definition, there exists $c \in \mathbb{Z}$ such that $a=2 c$. Consequently, $a^{2}=(2 c)^{2}=4 c^{2}$. Using modular congruence, we can see that $a^{2} \equiv 0 \bmod 4$ and $3 \equiv 3 \bmod 4$ We can see that a^{2} and 3 do not have the same congruence class $(\bmod 4)$. So, a^{2} does not equal $3(\bmod 4)$. Thus, $4 \nmid a^{2}-3$.

As we can see in both cases, $4 \nmid a^{2}-3$. Therefore, we can conclude that no matter the parity of a, $4 \nmid a^{2}-3$.

Comments:

Lemma 1. If $a \in \mathbb{Z}$, then $a^{2} \in \mathbb{Z}$
Proposition 2. If $a \in \mathbb{Z}$, then $4 \nmid\left(a^{2}-3\right)$.
Proof. Suppose $4 \mid\left(a^{2}-3\right)$ by contradiction. This means that there exists $b \in \mathbb{Z}$ such that $a^{2}-3=4 b$ by definition. This then brings up 2 cases:
Case 1: Suppose $a \in \mathbb{Z}$ and a is even. Since a is even, then there exists $c \in \mathbb{Z}$ such that $a=2 c$ by definition. So then, $(2 c)^{2}-3=4 b$, thus $4 c^{2}-3=4 b$, and then $4\left(c^{2}-b\right)=3$. It continues that $c^{2}-b=\frac{3}{4}$, and finally $b=c^{2}-\frac{3}{4}$. Since $c \in \mathbb{Z}$, then $c^{2} \in \mathbb{Z}$ by Lemma 1. Also, $\frac{3}{4} \notin \mathbb{Z}$ by the definition of an integer, then it follows that $b \notin \mathbb{Z}$. This is a contradiction of the assumption that $b \in \mathbb{Z}$, so $4 \nmid\left(a^{2}-3\right)$ when a is even.
Case 2: Suppose $a \in \mathbb{Z}$ and a is odd. Since a is odd, then there exists $d \in \mathbb{Z}$ such that $a=2 d+1$ by definition. So then $(2 d+1)^{2}-3=4 b$, and then $4 d^{2}+4 d-2=4 b$, thus $2 d^{2}+2 d-1=2 b$. It continues that $2\left(d^{2}+d-\frac{1}{2}\right)=2 b$, and finally $d^{2}+d-\frac{1}{2}=b$. Since $d \in \mathbb{Z}$, then $d^{2} \in \mathbb{Z}$ by Lemma 1 . Therefore, $d^{2}+d \in \mathbb{Z}$. Also, $\frac{1}{2} \notin \mathbb{Z}$ by the definition of an integer, then it follows that $b \notin \mathbb{Z}$. This is a contradiction of the assumption that $b \in \mathbb{Z}$, so $4 \nmid\left(a^{2}-3\right)$ when a is odd.
Conclusion: Since $4 \nmid\left(a^{2}-3\right)$ when a is either even or odd, therefore $4 \nmid\left(a^{2}-3\right)$ when $a \in \mathbb{Z}$.

Comments:

Theorem 2. If $a \in \mathbb{Z}$, then $4 \nmid\left(a^{2}-3\right)$.
Proof. For the sake of contradiction, assume that $a \in \mathbb{Z}$ and $4 \mid\left(a^{2}-3\right)$. By the definition of divides, there exists some integer k such that, $4 k=a^{2}-3$. This can be broken into two cases in which a is odd or a is even.

Case 1. a is odd. By the definition of odd, there exists some integer i such that, $a=2 i+1$. Using this value in $4 k=a^{2}-3$ we find, $4=(2 i+1)^{2}-3$. This can then be written as, $4 k=4 i^{2}+4 i-2$. Then factoring out a 4 shows, $k=i^{2}+i-\frac{1}{2}$. However, $i^{2}+i$ is an integer but, $\frac{1}{2}$ is rational. So, $i^{2}+i-\frac{1}{2}$ is not an integer. This contradicts that k is an integer.

Case 2. a is even. By the definition of even, there exists some integer n such that, $a=2 n$. Using this value in $4 k=a^{2}-3$ we find, $4=(2 n)^{2}-3$. This can then be written as, $4 k=4 n^{2}-3$. Then factoring out a 4 shows, $k=n^{2}-\frac{3}{4}$. However, n^{2} is an integer but, $\frac{3}{4}$ is rational. So, $n^{2}-\frac{3}{4}$ is not an integer. This contradicts that k is an integer.

Therefore by contradiction, $4 \nmid\left(a^{2}-3\right)$ for all $a \in \mathbb{Z}$.

Comments:

Proposition. If $a \in \mathbf{Z}$, then $4 \not \backslash\left(a^{2}-3\right)$.
Proof by contradiction. Assume that $4 \mid\left(a^{2}-3\right)$ for some $a \in \mathbf{Z}$. Then by definition, $4 n=\left(a^{2}+3\right)$ for some integer n. We then have to consider two cases.

Case 1: Consider than a is even. Then by definition, there exists an integer k such that $a=2 k$. So $4 n=(2 k)^{2}+3$ which can also be written as $4 n=4 k^{2}-3$. Thus $n=k^{2}-\frac{3}{4}$. Since, $\frac{3}{4}$ is not an integer, n is not an integer. This is a contradiction.

Case 2. Consider that a is odd. Then by definition, there exists an integer m such that $a=2 m+1$. So $4 n=(2 m+1)^{2}+3=\left(4 m^{2}+4 m+1\right)-3=4 m^{2}+4 m-2$. Dividing by 4 , we get $n=m^{2}+m-\frac{1}{2}$. Since $\frac{1}{2}$ is not an integer, n is not an integer. This is a contradiction.

Therefore, if $a \in \mathbf{Z}$, then $4 \not \backslash\left(a^{2}-3\right)$.

Comments:

Proposition 2. Let $a \in \mathbb{Z}$, if $a \in \mathbb{Z}$, then $4 \not \backslash a^{2}-3$

$$
\forall a \in \mathbb{Z}, \nexists c: 4 c=a^{2}-3
$$

Definition 1 (Divides). Let $a, b \in \mathbb{Z}$
a divides b , written $a \mid b$, if there is $c \in \mathbb{Z}$ such that $\mathrm{ac}=\mathrm{b}$.
Definition 2 (Even). Let $a \in \mathbb{Z}$
a is even if $a=2(k)$ for some $k \in \mathbb{Z}$
Definition 3 (Odd). Let $a \in \mathbb{Z}$
a is odd if $a=2(k)+1$ for some $k \in \mathbb{Z}$
Proof. let $a \in \mathbb{Z}$ Suppose that $4 \mid a^{2}-3$, so $\exists c \in \mathbb{Z}: 4 c=a^{2}-3$ by the definition of divides (Definition 1). Case 1: Let a be odd, then by the definition of odd (Definition 3), $a=2 k+1, k \in \mathbb{Z}$ It follows that $a^{2}-3=(2 k+1)(2 k+1)-3=4 k^{2}+4 k-2$. If $4 \mid a^{2}-3,4 c=4 k^{2}+4 k-2$, and $4 c=2\left(2\left(k^{2}-k\right)-1\right)$, so $2 c=2\left(k^{2}-k\right)-1$ so $c=k^{2}-k-1 / 2$. Furthermore, because the integers are closed under multiplication and subtraction, $\left(k^{2}-k\right) \in \mathbb{Z}$. Because $1 / 2$ is a rational number and not an integer, $4 \notin \mathbb{Z}$ and therefore $c \nmid a^{2}-3$ when a is odd by the definition of divides (Definition 1).
Case 2: Let a be odd, then by the definition of even (Definition 2), $a=2 k, k \in \mathbb{Z}$ It follows that $a^{2}-3=(2 k)^{2}-3=4 k^{2}-3$. If $4 \mid a^{2}-3,4 c=4 k^{2}-3$, and $c=k^{2}-3 / 4$. Since integers are closed under multiplication, $k^{2} \in \mathbb{Z}$. Because $3 / 2$ is a rational number and not an integer, $c \notin \mathbb{Z}$ and therefore $4 X a^{2}-3$ when a is even by the definition of divides (Definition 1).
By Case 1 and Case 2, $4 \not \backslash a^{2}-3$ when a is odd or when a is even, but this contradicts our assumption that $\exists a \in \mathbb{Z}: 4 \mid a^{2}-3$ so if $a \in \mathbb{Z}$, then $4 \not \backslash a^{2}-3$

Comments:

Proposition 2. If $x \in \mathbb{Z}$ then $4 \nmid\left(a^{2}-3\right)$.
Proof. Suppose, by way of contradiction, that $4 \mid\left(a^{2}-3\right)$.
By definition $\exists m \in \mathbb{Z}$ such that $4 m=a^{2}-3$.
Case 3. a is even.
By definition, $\exists k \in \mathbb{Z}$ such that $a=2 k$.
Then

$$
\begin{aligned}
(2 k)^{2}-3 & =4 m \\
4 k^{2}-3 & =4 m \\
k^{2}-\frac{3}{4} & =m
\end{aligned}
$$

Since $\frac{3}{4} \notin \mathbb{Z}, k^{2}-\frac{3}{4} \notin \mathbb{Z}$, which is a contradiction since $m \in \mathbb{Z}$.
Case 4. a is odd.
By definition, $\exists k \in \mathbb{Z}$ such that $a=2 k+1$.
Then

$$
\begin{aligned}
(2 k+1)^{2}-3 & =4 m \\
4 k^{2}+4 k+1-3 & =4 m \\
4 k^{2}+4 k-2 & =4 m \\
k^{2}+k-\frac{1}{2} & =m
\end{aligned}
$$

Hence $k^{2}+k \in \mathbb{Z}$ due to integers being closed under addition, but $\frac{1}{2} \notin \mathbb{Z}$, so $k^{2}+k-\frac{1}{2} \notin \mathbb{Z}$, which is a contradiction since $m \in \mathbb{Z}$.

Therefore, in both cases contradiction shows if $x \in \mathbb{Z}$ then $4 \nmid\left(a^{2}-3\right)$.

Comments:

Proposition 2. If $a \in \mathbb{Z}$, then $4 \nmid\left(a^{2}-3\right)$.
Proof. We will prove this by contradiction. Let $a \in \mathbb{Z}$ and suppose $4 \mid\left(a^{2}-3\right)$. Then, for some integer x, $\left(a^{2}-3\right)=4 x$. We can break this into two cases.
Case 1: a is even.
By definition, there is an integer m where $a=2 m$. Then $(2 m)^{2}-3=4 x$. Thus $4 m^{2}-3=4 x .4 m^{2}-3$ is odd because $4 m^{2}$ must be even and subtracting 3 results in an odd number. $4 x$ is even because $2(2 x)$ and by the definition of even. This is a contradiction because $4 m^{2}-3$ is odd and $4 x$ is even.
Case 2: a is odd.
By definition, there is an integer n where $a=2 n+1$. Then $(2 n+1)^{2}-3=4 x$. Thus $4 n^{2}+4 n+1-3=4 x$. Hence $4 n^{2}+4 n-2=4 x$. Dividing both sides by 4 leads to $n^{2}+n-\frac{1}{2}=x$. This is a contradiction because $n^{2}+n-\frac{1}{2}$ cannot be an integer while x is an integer.
Since we proved that $4 \nmid\left(a^{2}-3\right)$ for a is even and a is odd, we know that $4 \nmid\left(a^{2}-3\right)$ for a beings all integers. Therefore, $4 \nmid\left(a^{2}-3\right)$.

Comments:

Theorem 2. If $a \in \mathbb{Z}$, then $4 X\left(a^{2}-3\right)$.
Lemma 2. Let $a \in \mathbb{Z} a^{2}$ is odd if and only if a is odd (this was proved in class).
Proof. Let $a \in \mathbb{Z}$ and suppose, by way of contradiction, that $4 \mid\left(a^{2}-3\right)$.
By definition, there exists $b \in \mathbb{Z}$ such that $4 b=a^{2}-3$
This is equivalent to $a^{2}=4 b+3=4 b+2+1=2(2 b+1)+1$. Because $b \in \mathbb{Z}$, we can see that $2(2 b+1)+1$ is odd, and thus a^{2} is odd. By Lemma 1, we can see that a is odd.

By definition, there exists $c \in \mathbb{Z}$ such that $a=2 c+1$. Substituting $a=2 c+1$ in the above equation, we can see that $0=a^{2}-4 b-3=(2 c+1)^{2}-4 b-3=4 c^{2}+4 c+1-4 b-3=4 c^{2}+4 c-4 b-2$.

From this, we can see that $2=4 c^{2}+4 c-4 b$ and $1=2 c^{2}+2 c-2 b=2\left(c^{2}+c-b\right)$. Because $b, c \in \mathbb{Z}$ we can see that $2\left(c^{2}+c-b\right)$ is even. This is a contradiction because 1 is odd.

Therefore, we can see $4 \times\left(a^{2}-3\right)$.

Comments:

Proposition 2. If $a \in \mathbb{Z}$, then $4 \nmid\left(a^{2}-3\right)$.
Proof. Let $a \in \mathbb{Z}$, and let's consider the following cases:
Case 5. a is even. Then there is $k \in \mathbb{Z}$ such that $a=2 k$.
Then $a^{2}-3=(2 k)^{2}-3=4 k^{2}-3 \equiv-3(\bmod 4) \equiv 1(\bmod 4)$.
Case 6. a is odd: Then there is $k \in \mathbb{Z}$ such that $a=2 k+1$.
Then $a^{2}-3=(2 k+1)^{2}-3=4 k^{2}+4 k-2 \equiv-2(\bmod 4) \equiv 2(\bmod 4)$.
In either case, $a^{2}-3 \not \equiv 0(\bmod 4)$. Therefore $4 \nmid\left(a^{2}-3\right)$.

Comments:

Proposition 2. If $a \in \mathbb{Z}$, then $4 \nmid\left(a^{2}-3\right)$.
Proof. Let $a \in \mathbb{Z}$. Assume, by contradiction, that $4 \mid\left(a^{2}-3\right)$. Then there exists an integer b such that $4 b=a^{2}-3$.

First, let a be even. Since a is even, there exists an integer k such that $a=2 k$. So

$$
\begin{gathered}
(2 k)^{2}-3=4 b \\
4 k^{2}-3=4 b \\
k^{2}-\frac{3}{4}=b
\end{gathered}
$$

So k^{2} is an integer but since $\frac{3}{4}$ is rational, $k^{2}-\frac{3}{4}$ is not an integer and thus a contradiction.
Next, let a be odd. Since a is odd, there exists an integer k such that $a=2 k+1$. So

$$
\begin{gathered}
a^{2}-3=4 b \\
(2 k+1)^{2}-3=4 b \\
4 k^{2}+4 k+1-3=4 b \\
2 k^{2}+2 k-1=2 b \\
k^{2}+k-\frac{1}{2}=b
\end{gathered}
$$

So $k^{2}+k$ is an integer. And since $\frac{1}{2}$ is rational, $k^{2}+k-\frac{1}{2}$ which is a contradiction. Therefore, $4 X\left(a^{2}-3\right)$ for any integer.

Comments:

Proposition 5. If a is an integer, then 4 does not divide $2\left(2 c^{2}+2 c-1\right)$.
Proof. Suppose a is an integer. As such, a can be odd or even.
Suppose a is even. By definition, $a=2 c$, where c is an integer. It follows that $a^{2}-3=4 c^{2}-3$. Here, 4 does not divide $4 c^{2}-3$.

Suppose a is odd. By definition, $a=2 c+1$, where c is an integer. Then, $a^{2}-3=4 c^{2}-4 c-2=$ $2\left(2 c^{2}+2 c-1\right)$. Here, 4 also cannot divide $2\left(2 c^{2}+2 c-1\right)$.

Therefore, 4 does not divide $2\left(2 c^{2}+2 c-1\right)$.

Comments:

Proposition 3. For any natural numbers a and $b, a=l c m(a, b)$ if and only if $b \mid a$.
Proof. First we prove that if $a=l c m(a, b)$, then $b \mid a$. Suppose $a=l c m(a, b)$. Since a is the $l c m, a$ is a multiple of both a and b. By definition if a is a multiple of $b, b \mid a$.

Now we will show that if $b \mid a$, then $a=l c m(a, b)$. Since $b \mid a, a=b n$ for $n \in \mathbb{Z}$. Thus $l c m(a, b)=l c m(b n, b)$. By definition, the $l c m(b n, b)=b n$. We have already shown that $a=b n$. Therefore $a=l c m(a, b)$.

Comments:

Claim 1. 3 For any natural numbers a and $b, a=l c m(a, b)$ if and only $b \mid a$
Proof. Since we are proving a biconditional, we need to establish that if b divides a, then a is the least common multiple of a and b , along with proving that if a is the least common multiple of a and b , then b divides a . First, we'll prove the former. Let a and b be natural numbers, and suppose that b divides a. By definition of division, we know that there exists a natural number, z such that $b z=a$. It follows that $l c m(a, b)=l c m(b z, b)$. Since we know that $b \mid b z$, and since z is a natural number, therefore $b z>=b$, $l c m(b z, b)=b z$. Therefore, $\operatorname{lcm}(a, b)=a$. Next, we will try to prove that if $a=l c m(a, b)$, then $b \mid a$. Again, let a and b be natural numbers, and suppose $a=\operatorname{lcm}(a, b)$. By definition of being a multiple, there exists natural numbers, j and k , such that $l c m(a, b)=a j=b k$, both of which are equal to a. Taking the expression, $b k=a$, we see that $b \mid a$. Therefore $a=l c m(a, b)$ if and only if $b \mid a$.

Comments:

Proposition 3. $a=l c m(a, b)$ if and only if $b \mid a$.
Proof. Let $a, b \in \mathbb{N}$.
First suppose $\mathrm{a}=\operatorname{lcm}(\mathrm{a}, \mathrm{b})$. By definition, the least common multiple is the smallest positive integer that is divisible by both a and b. In other words, a divides the least common multiple and b divides the least common multiple. Since $\mathrm{a}=\operatorname{lcm}(\mathrm{a}, \mathrm{b})$ it follows that $a \mid a$ and $b \mid a$. This proves the statement if a $=\operatorname{lcm}(\mathrm{a}, \mathrm{b})$, then $b \mid a$.

Conversely suppose, by way of contradiction, that $b \mid a$ and $a \neq l c m(a, b)$. By definition, there is $c \in \mathbb{Z}$ such that $\mathrm{bc}=\mathrm{a}$. Since $a, b \in \mathbb{N}$, it follows that $c \in \mathbb{N}$. Also, since $\mathrm{bc}=\mathrm{a}$, we know that $\mathrm{b} \leq \mathrm{a}$. It follows that $\operatorname{lcm}(\mathrm{a}, \mathrm{b}) \geq$ a since the least common multiple of two natural numbers must be no less than the greater of the two numbers. And, since $a \mid a$ and $b \mid a$, it follows that $\mathrm{a}=\operatorname{lcm}(\mathrm{a}, \mathrm{b})$ which is a contradiction. This proves the statement if $b \mid a$, then $\mathrm{a}=\operatorname{lcm}(\mathrm{a}, \mathrm{b})$.

Comments:

Proposition 3. For any natural numbers a and $b, a=\operatorname{lcm}(a, b)$ if and only if $b \mid a$
Proof. First we show that for natural numbers a, b, if $a=\operatorname{lcm}(a, b)$ then $b \mid a$. Suppose $a=\operatorname{lcm}(a, b)$. By definition of least common multiple, there exists some natural number k such that $a=b k$. Observe that $a=b k$ follows the same form as if $b \mid a$. By definition of divides, there exists some natural number k such that $a=b k$. Therefore if if $a=\operatorname{lcm}(a, b)$ then $b \mid a$.

Conversely, suppose that $b \mid a$. By definition of divides, there exists some natural number n such that $a=b n$. Observe that $a=b n$ takes the form of $a=\operatorname{lcm}(a, b)$. By definition of least common multiple, there exists some natural number b such that $a=b n$. Therefore, if $b \mid a$, then $a=\operatorname{lcm}(a, b)$.

Comments:

Proposition 4. Let C be a circle in \mathbb{R}^{2} centered at $(1,1)$. Then either $(2,3) \notin C$ or $(0,2) \notin C$. (Note that C is just the circle itself, not the interior).

Proof. Let C be a circle in \mathbb{R}^{2} centered at $(1,1)$. Note that the two key pieces of information of a circle in \mathbb{R}^{2} are its center point and its radius. With those two pieces of information, all points of the circle can be determined. Since we are saying that C is centered at $(1,1)$, the radius of C is the only thing that can vary. Also note that we are trying to prove that $(2,3)$ and $(0,2)$ can not both be in C at the same time.

If $(2,3)$ is not a point in C, then clearly it is true that either $(2,3) \notin C$ or $(0,2) \notin C$. So, suppose that $(2,3)$ is a point in C. The distance between $(2,3)$ and the center, $(1,1)$, is the radius of C. Let r represent the length of the radius of the circle. This variable can be calculated by finding the Euclidean distance between the points $(1,1)$ and $(2,3)$.

$$
\begin{aligned}
r & =\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\
& =\sqrt{(2-1)^{2}+(3-1)^{2}} \\
& =\sqrt{1^{2}+2^{2}} \\
& =\sqrt{5}
\end{aligned}
$$

So all points in C must be a distance of $\sqrt{5}$ units away from $(1,1)$ if $(2,3)$ is a point in C. Let d be the distance from $(1,1)$ and $(0,2)$, and let us calculate d in the same manner.

$$
\begin{aligned}
d & =\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\
& =\sqrt{(0-1)^{2}+(2-1)^{2}} \\
& =\sqrt{(-1)^{2}+1^{2}} \\
& =\sqrt{2}
\end{aligned}
$$

Since the distance from $(0,2)$ to $(1,1)$ is not $\sqrt{5},(0,2)$ can not be a point in C while $(2,3)$ is a point in C.

Therefore, if C is a circle in \mathbb{R}_{2} centered at $(1,1)$, then either $(2,3) \notin C$ or $(0,2) \notin C$.

Comments:

Proposition 1. Let $n \in \mathbb{N}$ and $n \geq 2$, then $\sqrt[n]{2}$ is irrational.
Proof. Let $n \in \mathbb{N}$ and $n \geq 2$. Suppose, by way of contradiction, that $\sqrt[n]{2}$ is rational. Then by definition of a rational number, there exists $a, b \in \mathbb{Z}$, such that $\sqrt[n]{2}=a / b$. We may also assume that $\operatorname{gcd}(a, b)=1$. Then, $\sqrt[n]{2}=a / b \rightarrow 2=a^{n} / b^{n} \rightarrow 2 b^{n}=a^{n}$. Since $b^{n} \in \mathbb{Z}$, we can see by definition of evens that a^{n} is even. Since a^{n} is even, it follows that a is even. Then there exists an integer c, such that $a=2 c$. Then $2 b^{n}=2^{n} c^{n} \rightarrow b^{n}=2^{n-1} c^{n}$. Since $n \geq 2, b$ is even. This means that a and b are both multiples of 2, meaning $\operatorname{gcd}(a, b) \geq 2$. This is a contradiction.
Definition 4. Let $a \in \mathbb{Z} . a$ is even if there exists an integer c such that $a=2 c$.
Definition 5. A real number x is rational if $x=a / b$ for some $a, b \in \mathbb{Z}$.

Comments:

