Proposition 2. If $a \in \mathbb{Z}$, then $4 \nmid (a^2 - 3)$

Proof. Because $a \in \mathbb{Z}$, a could be either odd or even, so we need multiple cases.

Case 1: a is odd. By definition, there exists $b \in \mathbb{Z}$ such that a = 2b + 1. It follows that $a^2 = (2b+1)^2 = 4b^2 + 4b + 1$. Then, $a^2 \equiv 1 \mod 4$ and $3 \equiv 3 \mod 4$. As we can see, a^2 and 3 do not have the same congruence class (mod 4). So, a^2 does not have the same congruence class as 3 (mod 4). Thus, $4 \nmid a^2 - 3$. Case 2: a is even. By definition, there exists $c \in \mathbb{Z}$ such that a = 2c. Consequently, $a^2 = (2c)^2 = 4c^2$.

Using modular congruence, we can see that $a^2 \equiv 0 \mod 4$ and $3 \equiv 3 \mod 4$ We can see that $a^2 \equiv ad 3$ do not have the same congruence class (mod 4). So, a^2 does not equal 3 (mod 4). Thus, $4 \nmid a^2 - 3$.

As we can see in both cases, $4 \nmid a^2 - 3$. Therefore, we can conclude that no matter the parity of a, $4 \nmid a^2 - 3$.

Comments:

Lemma 1. If $a \in \mathbb{Z}$, then $a^2 \in \mathbb{Z}$

Proposition 2. If $a \in \mathbb{Z}$, then $4 \nmid (a^2 - 3)$.

Proof. Suppose $4|(a^2 - 3)$ by contradiction. This means that there exists $b \in \mathbb{Z}$ such that $a^2 - 3 = 4b$ by definition. This then brings up 2 cases:

Case 1: Suppose $a \in \mathbb{Z}$ and a is even. Since a is even, then there exists $c \in \mathbb{Z}$ such that a = 2c by definition. So then, $(2c)^2 - 3 = 4b$, thus $4c^2 - 3 = 4b$, and then $4(c^2 - b) = 3$. It continues that $c^2 - b = \frac{3}{4}$, and finally $b = c^2 - \frac{3}{4}$. Since $c \in \mathbb{Z}$, then $c^2 \in \mathbb{Z}$ by Lemma 1. Also, $\frac{3}{4} \notin \mathbb{Z}$ by the definition of an integer, then it follows that $b \notin \mathbb{Z}$. This is a contradiction of the assumption that $b \in \mathbb{Z}$, so $4 \nmid (a^2 - 3)$ when a is even.

Case 2: Suppose $a \in \mathbb{Z}$ and a is odd. Since a is odd, then there exists $d \in \mathbb{Z}$ such that a = 2d + 1 by definition. So then $(2d + 1)^2 - 3 = 4b$, and then $4d^2 + 4d - 2 = 4b$, thus $2d^2 + 2d - 1 = 2b$. It continues that $2(d^2 + d - \frac{1}{2}) = 2b$, and finally $d^2 + d - \frac{1}{2} = b$. Since $d \in \mathbb{Z}$, then $d^2 \in \mathbb{Z}$ by Lemma 1. Therefore, $d^2 + d \in \mathbb{Z}$. Also, $\frac{1}{2} \notin \mathbb{Z}$ by the definition of an integer, then it follows that $b \notin \mathbb{Z}$. This is a contradiction of the assumption that $b \in \mathbb{Z}$, so $4 \nmid (a^2 - 3)$ when a is odd.

Conclusion: Since $4 \nmid (a^2 - 3)$ when a is either even or odd, therefore $4 \nmid (a^2 - 3)$ when $a \in \mathbb{Z}$.

Theorem 2. If $a \in \mathbb{Z}$, then $4 \nmid (a^2 - 3)$.

Proof. For the sake of contradiction, assume that $a \in \mathbb{Z}$ and $4 \mid (a^2 - 3)$. By the definition of divides, there exists some integer k such that, $4k = a^2 - 3$. This can be broken into two cases in which a is odd or a is even.

Case 1. *a* is odd. By the definition of odd, there exists some integer *i* such that, a = 2i + 1. Using this value in $4k = a^2 - 3$ we find, $4 = (2i + 1)^2 - 3$. This can then be written as, $4k = 4i^2 + 4i - 2$. Then factoring out a 4 shows, $k = i^2 + i - \frac{1}{2}$. However, $i^2 + i$ is an integer but, $\frac{1}{2}$ is rational. So, $i^2 + i - \frac{1}{2}$ is not an integer. This contradicts that *k* is an integer.

Case 2. *a* is even. By the definition of even, there exists some integer *n* such that, a = 2n. Using this value in $4k = a^2 - 3$ we find, $4 = (2n)^2 - 3$. This can then be written as, $4k = 4n^2 - 3$. Then factoring out a 4 shows, $k = n^2 - \frac{3}{4}$. However, n^2 is an integer but, $\frac{3}{4}$ is rational. So, $n^2 - \frac{3}{4}$ is not an integer. This contradicts that *k* is an integer.

Therefore by contradiction, $4 \nmid (a^2 - 3)$ for all $a \in \mathbb{Z}$.

Comments:

Proposition. If $a \in \mathbf{Z}$, then $4 \not| (a^2 - 3)$.

Proof by contradiction. Assume that $4|(a^2 - 3)$ for some $a \in \mathbb{Z}$. Then by definition, $4n = (a^2 + 3)$ for some integer n. We then have to consider two cases.

Case 1: Consider than a is even. Then by definition, there exists an integer k such that a = 2k. So $4n = (2k)^2 + 3$ which can also be written as $4n = 4k^2 - 3$. Thus $n = k^2 - \frac{3}{4}$. Since, $\frac{3}{4}$ is not an integer, n is not an integer. This is a contradiction.

Case 2. Consider that a is odd. Then by definition, there exists an integer m such that a = 2m + 1. So $4n = (2m + 1)^2 + 3 = (4m^2 + 4m + 1) - 3 = 4m^2 + 4m - 2$. Dividing by 4, we get $n = m^2 + m - \frac{1}{2}$. Since $\frac{1}{2}$ is not an integer, n is not an integer. This is a contradiction.

Therefore, if $a \in \mathbb{Z}$, then $4 \not| (a^2 - 3)$.

Comments:

Proposition 2. Let $a \in \mathbb{Z}$, if $a \in \mathbb{Z}$, then $4 \not| a^2 - 3$

$$\forall a \in \mathbb{Z}, \not\exists c \colon 4c = a^2 - 3$$

Definition 1 (Divides). Let $a, b \in \mathbb{Z}$ a divides b, written a|b, if there is $c \in \mathbb{Z}$ such that ac = b.

Definition 2 (Even). Let $a \in \mathbb{Z}$ a is even if a = 2(k) for some $k \in \mathbb{Z}$

Definition 3 (Odd). Let $a \in \mathbb{Z}$ a is odd if a = 2(k) + 1 for some $k \in \mathbb{Z}$

Proof. let $a \in \mathbb{Z}$ Suppose that $4|a^2 - 3$, so $\exists c \in \mathbb{Z} : 4c = a^2 - 3$ by the definition of divides (Definition 1). Case 1: Let a be odd, then by the definition of odd (Definition 3), $a = 2k + 1, k \in \mathbb{Z}$ It follows that $a^2 - 3 = (2k+1)(2k+1) - 3 = 4k^2 + 4k - 2$. If $4|a^2 - 3, 4c = 4k^2 + 4k - 2$, and $4c = 2(2(k^2 - k) - 1)$, so $2c = 2(k^2 - k) - 1$ so $c = k^2 - k - 1/2$. Furthermore, because the integers are closed under multiplication and subtraction, $(k^2 - k) \in \mathbb{Z}$. Because 1/2 is a rational number and not an integer, $4 \notin \mathbb{Z}$ and therefore $c \not a^2 - 3$ when a is odd by the definition of divides (Definition 1).

Case 2: Let a be odd, then by the definition of even (Definition 2), $a = 2k, k \in \mathbb{Z}$ It follows that $a^2 - 3 = (2k)^2 - 3 = 4k^2 - 3$. If $4|a^2 - 3, 4c = 4k^2 - 3$, and $c = k^2 - 3/4$. Since integers are closed under multiplication, $k^2 \in \mathbb{Z}$. Because 3/2 is a rational number and not an integer, $c \notin \mathbb{Z}$ and therefore $4 \not| a^2 - 3$ when a is even by the definition of divides (Definition 1).

By Case 1 and Case 2, $4 \not| a^2 - 3$ when a is odd or when a is even, but this contradicts our assumption that $\exists a \in \mathbb{Z} : 4 | a^2 - 3$ so if $a \in \mathbb{Z}$, then $4 \not| a^2 - 3$

Proposition 2. If $x \in \mathbb{Z}$ then $4 \nmid (a^2 - 3)$.

Proof. Suppose, by way of contradiction, that $4 \mid (a^2 - 3)$. By definition $\exists m \in \mathbb{Z}$ such that $4m = a^2 - 3$.

Case 3. a is even.

By definition, $\exists k \in \mathbb{Z}$ such that a = 2k. Then

$$(2k)^2 - 3 = 4m$$
$$4k^2 - 3 = 4m$$
$$k^2 - \frac{3}{4} = m$$

Since $\frac{3}{4} \notin \mathbb{Z}$, $k^2 - \frac{3}{4} \notin \mathbb{Z}$, which is a contradiction since $m \in \mathbb{Z}$.

Case 4. a is odd.

By definition, $\exists k \in \mathbb{Z}$ such that a = 2k + 1. Then

$$(2k+1)^2 - 3 = 4m$$
$$4k^2 + 4k + 1 - 3 = 4m$$
$$4k^2 + 4k - 2 = 4m$$
$$k^2 + k - \frac{1}{2} = m$$

Hence $k^2 + k \in \mathbb{Z}$ due to integers being closed under addition, but $\frac{1}{2} \notin \mathbb{Z}$, so $k^2 + k - \frac{1}{2} \notin \mathbb{Z}$, which is a contradiction since $m \in \mathbb{Z}$.

Therefore, in both cases contradiction shows if $x \in \mathbb{Z}$ then $4 \nmid (a^2 - 3)$.

Proposition 2. If $a \in \mathbb{Z}$, then $4 \nmid (a^2 - 3)$.

Proof. We will prove this by contradiction. Let $a \in \mathbb{Z}$ and suppose $4 \mid (a^2 - 3)$. Then, for some integer x, $(a^2 - 3) = 4x$. We can break this into two cases. **Case 1:** a is even.

By definition, there is an integer m where a = 2m. Then $(2m)^2 - 3 = 4x$. Thus $4m^2 - 3 = 4x$. $4m^2 - 3$ is odd because $4m^2$ must be even and subtracting 3 results in an odd number. 4x is even because 2(2x) and by the definition of even. This is a contradiction because $4m^2 - 3$ is odd and 4x is even.

Case 2: a is odd.

By definition, there is an integer n where a = 2n + 1. Then $(2n+1)^2 - 3 = 4x$. Thus $4n^2 + 4n + 1 - 3 = 4x$. Hence $4n^2 + 4n - 2 = 4x$. Dividing both sides by 4 leads to $n^2 + n - \frac{1}{2} = x$. This is a contradiction because $n^2 + n - \frac{1}{2}$ cannot be an integer while x is an integer.

Since we proved that $4 \nmid (a^2 - 3)$ for *a* is even and *a* is odd, we know that $4 \nmid (a^2 - 3)$ for *a* beings all integers. Therefore, $4 \nmid (a^2 - 3)$.

Theorem 2. If $a \in \mathbb{Z}$, then $4 \not| (a^2 - 3)$.

Lemma 2. Let $a \in \mathbb{Z}$ a^2 is odd if and only if a is odd (this was proved in class).

Proof. Let $a \in \mathbb{Z}$ and suppose, by way of contradiction, that $4|(a^2 - 3)$.

By definition, there exists $b \in \mathbb{Z}$ such that $4b = a^2 - 3$

This is equivalent to $a^2 = 4b+3 = 4b+2+1 = 2(2b+1)+1$. Because $b \in \mathbb{Z}$, we can see that 2(2b+1)+1 is odd, and thus a^2 is odd. By Lemma 1, we can see that a is odd.

By definition, there exists $c \in \mathbb{Z}$ such that a = 2c + 1. Substituting a = 2c + 1 in the above equation, we can see that $0 = a^2 - 4b - 3 = (2c + 1)^2 - 4b - 3 = 4c^2 + 4c + 1 - 4b - 3 = 4c^2 + 4c - 4b - 2$.

From this, we can see that $2 = 4c^2 + 4c - 4b$ and $1 = 2c^2 + 2c - 2b = 2(c^2 + c - b)$. Because $b, c \in \mathbb{Z}$ we can see that $2(c^2 + c - b)$ is even. This is a contradiction because 1 is odd.

Therefore, we can see $4 \not| (a^2 - 3)$.

Comments:

Proposition 2. If $a \in \mathbb{Z}$, then $4 \nmid (a^2 - 3)$.

Proof. Let $a \in \mathbb{Z}$, and let's consider the following cases:

Case 5. *a* is even. Then there is $k \in \mathbb{Z}$ such that a = 2k. Then $a^2 - 3 = (2k)^2 - 3 = 4k^2 - 3 \equiv -3(mod4) \equiv 1(mod4)$.

Case 6. *a* is odd: Then there is $k \in \mathbb{Z}$ such that a = 2k + 1. Then $a^2 - 3 = (2k + 1)^2 - 3 = 4k^2 + 4k - 2 \equiv -2(mod4) \equiv 2(mod4)$.

In either case, $a^2 - 3 \not\equiv 0 \pmod{4}$. Therefore $4 \not\mid (a^2 - 3)$.

Comments:

Proposition 2. If $a \in \mathbb{Z}$, then $4 \nmid (a^2 - 3)$.

Proof. Let $a \in \mathbb{Z}$. Assume, by contradiction, that $4|(a^2 - 3)$. Then there exists an integer b such that $4b = a^2 - 3$.

First, let a be even. Since a is even, there exists an integer k such that a = 2k. So

$$(2k)^{2} - 3 = 4b$$
$$4k^{2} - 3 = 4b$$
$$k^{2} - \frac{3}{4} = b$$

So k^2 is an integer but since $\frac{3}{4}$ is rational, $k^2 - \frac{3}{4}$ is not an integer and thus a contradiction. Next, let a be odd. Since a is odd, there exists an integer k such that a = 2k + 1. So

$$a^{2} - 3 = 4b$$

$$(2k + 1)^{2} - 3 = 4b$$

$$4k^{2} + 4k + 1 - 3 = 4b$$

$$2k^{2} + 2k - 1 = 2b$$

$$k^{2} + k - \frac{1}{2} = b$$

So $k^2 + k$ is an integer. And since $\frac{1}{2}$ is rational, $k^2 + k - \frac{1}{2}$ which is a contradiction. Therefore, $4 \not| (a^2 - 3)$ for any integer.

Comments:

Proposition 5. If a is an integer, then 4 does not divide $2(2c^2 + 2c - 1)$.

Proof. Suppose a is an integer. As such, a can be odd or even.

Suppose a is even. By definition, a = 2c, where c is an integer. It follows that $a^2 - 3 = 4c^2 - 3$. Here, 4 does not divide $4c^2 - 3$.

Suppose a is odd. By definition, a = 2c + 1, where c is an integer. Then, $a^2 - 3 = 4c^2 - 4c - 2 = 2(2c^2 + 2c - 1)$. Here, 4 also cannot divide $2(2c^2 + 2c - 1)$.

Therefore, 4 does not divide $2(2c^2 + 2c - 1)$.

Comments:

Proposition 3. For any natural numbers a and b, a = lcm(a, b) if and only if b|a.

Proof. First we prove that if a = lcm(a, b), then b|a. Suppose a = lcm(a, b). Since a is the lcm, a is a multiple of both a and b. By definition if a is a multiple of b, b|a.

Now we will show that if b|a, then a = lcm(a, b). Since b|a, a = bn for $n \in \mathbb{Z}$. Thus lcm(a, b) = lcm(bn, b). By definition, the lcm(bn, b) = bn. We have already shown that a = bn. Therefore a = lcm(a, b).

Comments:

Claim 1. 3 For any natural numbers a and b, a = lcm(a, b) if and only b|a

Proof. Since we are proving a biconditional, we need to establish that if b divides a, then a is the least common multiple of a and b, along with proving that if a is the least common multiple of a and b, then b divides a. First, we'll prove the former. Let a and b be natural numbers, and suppose that b divides a. By definition of division, we know that there exists a natural number, z such that bz = a. It follows that lcm(a,b) = lcm(bz,b). Since we know that b|bz, and since z is a natural number, therefore $bz \ge b$, lcm(bz,b) = bz. Therefore, lcm(a,b) = a. Next, we will try to prove that if a = lcm(a,b), then b|a. Again, let a and b be natural numbers, and suppose a = lcm(a,b). By definition of being a multiple, there exists natural numbers, j and k, such that lcm(a,b) = aj = bk, both of which are equal to a. Taking the expression, bk = a, we see that b|a. Therefore a = lcm(a,b) if and only if b|a.

Comments:

Proposition 3. a = lcm(a,b) if and only if $b \mid a$.

Proof. Let $a, b \in \mathbb{N}$.

First suppose a = lcm(a,b). By definition, the least common multiple is the smallest positive integer that is divisible by both a and b. In other words, a divides the least common multiple and b divides the least common multiple. Since a = lcm(a,b) it follows that $a \mid a$ and $b \mid a$. This proves the statement if a = lcm(a,b), then $b \mid a$.

Conversely suppose, by way of contradiction, that $b \mid a$ and $a \neq lcm(a, b)$. By definition, there is $c \in \mathbb{Z}$ such that bc = a. Since $a, b \in \mathbb{N}$, it follows that $c \in \mathbb{N}$. Also, since bc = a, we know that $b \leq a$. It follows that $lcm(a,b) \geq a$ since the least common multiple of two natural numbers must be no less than the greater of the two numbers. And, since $a \mid a$ and $b \mid a$, it follows that a = lcm(a,b) which is a contradiction. This proves the statement if $b \mid a$, then a = lcm(a,b).

Comments:

Proposition 3. For any natural numbers a and b, a = lcm(a, b) if and only if $b \mid a$

Proof. First we show that for natural numbers a, b, if $a = \operatorname{lcm}(a, b)$ then $b \mid a$. Suppose $a = \operatorname{lcm}(a, b)$. By definition of least common multiple, there exists some natural number k such that a = bk. Observe that a = bk follows the same form as if $b \mid a$. By definition of divides, there exists some natural number k such that a = bk. Therefore if if $a = \operatorname{lcm}(a, b)$ then $b \mid a$.

Conversely, suppose that $b \mid a$. By definition of divides, there exists some natural number n such that a = bn. Observe that a = bn takes the form of a = lcm(a, b). By definition of least common multiple, there exists some natural number b such that a = bn. Therefore, if $b \mid a$, then a = lcm(a, b).

Proposition 4. Let C be a circle in \mathbb{R}^2 centered at (1,1). Then either (2,3) $\notin C$ or (0,2) $\notin C$. (Note that C is just the circle itself, not the interior).

Proof. Let C be a circle in \mathbb{R}^2 centered at (1,1). Note that the two key pieces of information of a circle in \mathbb{R}^2 are its center point and its radius. With those two pieces of information, all points of the circle can be determined. Since we are saying that C is centered at (1,1), the radius of C is the only thing that can vary. Also note that we are trying to prove that (2,3) and (0,2) can not both be in C at the same time.

If (2,3) is not a point in C, then clearly it is true that either $(2,3) \notin C$ or $(0,2) \notin C$. So, suppose that (2,3) is a point in C. The distance between (2,3) and the center, (1,1), is the radius of C. Let r represent the length of the radius of the circle. This variable can be calculated by finding the Euclidean distance between the points (1,1) and (2,3).

$$r = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

= $\sqrt{(2 - 1)^2 + (3 - 1)^2}$
= $\sqrt{1^2 + 2^2}$
= $\sqrt{5}$

So all points in C must be a distance of $\sqrt{5}$ units away from (1, 1) if (2, 3) is a point in C. Let d be the distance from (1, 1) and (0, 2), and let us calculate d in the same manner.

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

= $\sqrt{(0 - 1)^2 + (2 - 1)^2}$
= $\sqrt{(-1)^2 + 1^2}$
= $\sqrt{2}$

Since the distance from (0,2) to (1,1) is not $\sqrt{5}$, (0,2) can not be a point in C while (2,3) is a point in C.

Therefore, if C is a circle in \mathbb{R}_2 centered at (1,1), then either $(2,3) \notin C$ or $(0,2) \notin C$.

Proposition 1. Let $n \in \mathbb{N}$ and $n \geq 2$, then $\sqrt[n]{2}$ is irrational.

Proof. Let $n \in \mathbb{N}$ and $n \geq 2$. Suppose, by way of contradiction, that $\sqrt[n]{2}$ is rational. Then by definition of a rational number, there exists $a, b \in \mathbb{Z}$, such that $\sqrt[n]{2} = a/b$. We may also assume that gcd(a, b) = 1. Then, $\sqrt[n]{2} = a/b \rightarrow 2 = a^n/b^n \rightarrow 2b^n = a^n$. Since $b^n \in \mathbb{Z}$, we can see by definition of evens that a^n is even. Since a^n is even, it follows that a is even. Then there exists an integer c, such that a = 2c. Then $2b^n = 2^n c^n \rightarrow b^n = 2^{n-1} c^n$. Since $n \geq 2$, b is even. This means that a and b are both multiples of 2, meaning $gcd(a, b) \geq 2$. This is a contradiction.

Definition 4. Let $a \in \mathbb{Z}$. *a* is even if there exists an integer *c* such that a = 2c.

Definition 5. A real number x is rational if x = a/b for some $a, b \in \mathbb{Z}$.