From the intrinsic evidence of his creation, the Grear
Architect of the Universe now begins to appear as q
pure mathematician, - James Jeans (1877-1946)

The Mathematician

John von -Neumann

Janos von Neumann (1903-1957), or
“Johnny" as he was later to be called in
America, was a child prodigy, who in his rela-
tively short life made significant and enduring
contributions to a wide range of topics—
mathematics, physics, computer engineering,
and mathematical economics.

He was born in Budapest, the son of
Miksa (Max) Neumann and Margit
{Margaret) Kann. The [parents were members
of the affluent Jewish community - of
Budapest—affluent both financially and
intellectually. Margaret's father was a very
successful businessman who, among other things, copied in Hungary, the
successful practices of Sears Roebuck, We also explain parenthetically, that
in 1913 Max was given the privilege of adding the honorific “von” to his

name but he did not avail himself of that option. His son John however did -
and used the German form "von Neumann.” In addition to Janos, the par- 7

ents had two other children—~Nicholas and Michael.-

Yon Neumann had a phenomenal memory and as a child could read clas-
sical Greek and perform prodigious mathematical calculations in his head. The
environment in which he was reared offered all possible educational advan-
tages—governesses who taught him German and French, for example, Dinner
in the Neumann household was a constant source of intellectual stimulation.
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Janos attended one of the more demanding secondary schools but, after
graduation, his father was skeptical of a career in mathematics as one hav-
ing limited financial opportunity. With the help of Theodore von Karman, he
urged Janos to study chemistry and eventually von Neumann got a diploma
in chemical engineering from Ziirich in 1925. The lure of mathematics how-
ever was too great and, accordingly, he completed a doctoral degree in
mathematics in Budapest in 1928. While in Ziirich he had stimulating con-
tacts with Hermann Weyl and George Polya.

in 1930, von Neumann married Mariette Korvesi and at the same time

the family converted to Catholicism. The Neumanns, however, were not
active either in Judaism or in Catholicism. On the other hand, von Neumann, -
giving in to Pascal’s wager on his death bed, received extreme unction.

John and Marietta had one daughter Marina but were divorced in 1936.

In 1938 he matried Klari Dan.

His mathematical achievements very quickly attracted wide attention; he
lectured in Berlin between 1926 and1929 and accepted a position as visit-
ing lecturer at Princeton in 1930. When the Institute for Advanced Study was
established in Princeton in 1933, he was one of the six professors appointed.
He was a very lively host and spirited conversationalist and the von
Neumann home was a place of great hospitality. Although he continued his
European contacts, the coming to power of the Nazis induced him 1o sever
ali ties with National Socialist Germany.

During and after World War !l he served as a consultant to the U.S. armed
sarvices. In one of these roles his valuable contributions included the “implo-
sion” method for bringing nuclear fuel to critical mass, thus hastening the
development of the atomic bomb. After the war he continued as a consultant
to the government and espoused what were, at that time, called “hawkish”
policies. His cold-war political views were not popular with many colleagues.

In his research activities, he had become interested in, among other
things, hydrodynamical turbulence and in the analysis of the underlying
non-linear partial differential equations. Numerical analysis seemed to be
the only path to insights into this difficult field and the need to perform

elaborate calculations impelled him to study new techniques for performing

these calculations and, in particular, to investigate the burgeoning field of
electronic computers. His ideas contributed significantly to the development
of techniques and methodologies currently in use. He presided over the con-
struction of an electronic computer in Princeton.

His wide-ranging intellect led him to undertake research in economics
and with Oskar Morgenstern, Neumann wrote a seminal work on mathe-

matical economics.
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express are probably not wholly shared by many other mathematicians
~—you will get one man’s not-too-well systematized impressions and
interpretations—and I can give you only very little help in deciding how
‘much they are to the point. .

In spite of all these hedges, however, T must admit that it is an inter-
esting and challenging task to make the attempt and to talk to you about
the nature of intellectual effort in mathematics. I only hope that T will
not tail too badly. N

The most vitally characteristic fact about mathematics is, in my opin-
ion, its quite peculiar relationship to the natural sciences, or more gener-
ally, to any science which interprets experience on a higher than purely
descriptive level. :

Most people, mathematicians and others, will agree that mathematics
is not an empirical science, or at least that it is practiced in a manner
which differs in several decisive respects from the techniques of the
empirical sciences. And, yet, its development is very closely linked with
the natural sciences. One of its main branches, geometry, actually start-
ed as a natural, empirical science. Some of the best inspirations of mod-
ern mathematics (I believe, the best ones) clearly originated in the nat-
ural sciences. The methods of mathematics pervade and dominate the
“theoretical” divisions of the natural sciences. In modern empirical sei-
ences it has become more and more a major criterion of success whether
they have become accessible to the mathematical method or to the near-
mathematical methods of physics. Indeed, throughout the natural sci-
ences an unbroken chain of successive pseudomorphoses, all of them
pressing toward mathematics, and almost identified with the idea of sci-
entific progress, has become more and more evident. Biology becomes
increasingly pervaded by chemistry and physics, chemistry by experi-

mental and theoretical physics, and physics by very mathematical forms
of theoretical physics.

There is a quite peculiar duplicity in the nature of mathematics. One
has to realize this duplicity, to accept it, and to assimilate it into one’s
thinking on the subject, This double face is the face of mathematics, and
I do not believe that any simplified, unitarian view of the thing is pos-
sible without sacrificing the essence.

I will therefore not attempt to present you with a unitarian version. I

will attempt to describe, as best I can, the multiple phenomenon which
is mathematics.
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son, why, of all Euclid’s postulates, the fifth was questioned, was clearly
the unempirical character of the concept of the entirc infinite plane
which intervenes there, and there only. The idea that in at least one sig-
nificant sense—and in spite of all mathematico-logical analyses—the
decision for or against Euclid may have to be empirical, was certainly
present in the mind of the greatest mathematician, Gauss. And after
Bolyai, Lobatsehefski, Riemann, and Klein had obtained more abstrac-
to, what we today consider the formal resolution of the original contro-
versy, empitics—or rather physics-—nevertheless, had the final say.
The discovery of general relativity forced a revision of our views on the
relationship of geometry in an entirely new setting and with a quite new
distribution of the purely mathematical emphases, too. Finally, one
- more touch to complete the picture of contrast. This last development
took place in the same generation which saw the complete de-empiriza-
tion and abstraction of Euclid’s axiomatic method in the hands of the
modern axiomatic-logical mathematicians. And these two seemingly
conflicting attitudes are perfectly compatible in one mathematical mind;
thus Hilbert made important contributions to both axiomatic geometry
and to general relativity.

The second example is calculus—or rather all of analysis, which
sprang from it. The calculus was the first achievement of modern math-
ematics, and it is difficult to overestimate its importance. 1 think it
defines more unequivocally than anything clse the inception of modern
mathematics, and the system of mathematical analysis, which is its log-
ical development, still constitutes the greatest technical advance in
exact thinking, : .

The origins of calculus are clearly empirical. Kepler’s first attempis
at integration were formulated as “dolichometry”—measurement of
kegs, that is, volumetry for bodies with curved surfaces, This is geom-
etry, but post-Euclidean, and, at the epoch in question, nonaxiomatic,

empirical geometry. Of this, Kepler was fully aware. The main effort
and the main discoveries, those of Newton and Leibniz, were of an
explicitly physical origin. Newton invented the calculus “of fluxions”
essentially for the purposes of mechanics—in fact, the two disciplines,
calculus and mechanics, were developed by him more or less together.
The first formulations of the calculus were not even mathematically rig-
orous. An inexact, semiphysical formulation was the only one available
for over a hundred and fifty years after Newton! And vet, some of the
most important advances of analysis took place during this period,
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In analyzing the variability of the concept of mathematical rigor, I
wish to lay the main stress on the “foundations” controversy, as men-
tioned above. I would, however, like to consider first briefly a second-
ary aspect of the matter. This aspect also strengthens my argument, but
I'do consider it as secondary, because it is probably less conclusive than
the analysis of the “foundations” controversy. I am referring to the
changes of mathematical “style.” It is well known that the style in which
mathematical proofs are written has undergone considerable fluctua-
tions. It is better to talk of fluctuations than of a trend because in some
respects the difference between the present and certain authors of the
eighteenth or of the nineteenth century is greater than between the pres-
ent and Buclid. On the other hand, in other respects there has been
remarkable constancy. In fields in which differences are present, they
are mainly differences in presentation, which can be eliminated without
bringing in any new ideas. However, in many cases these differences
are so wide that one begins to doubt whether authors who “preset their
cases” in such divergent ways can have been separated by differences in
style, taste, and education only—whether they can really have had the
same ideas as to what constitutes mathematical rigor, Finally, in the
extreme cases {e.g., in much of the work of the late-eighteenth-centary
analysis, referred to above), the diffcrences are essential and can be
remedied, if at all, only with the help of new and profound theories,
which it took up to a hundred years to develop. Some of the mathemati-
cians who worked in such, to us, unrigorous ways (or some of their con-
temporaries, who criticized them) were well aware of their lack of rigor.
Or to be more objective: their own desires as to what mathematical pro-
cedure should be were more in conformity with our present views than
their actions. But others—the greatest virtuoso of the period, for exam-
ple, Euler—seem to have acted in perfect good faith and to have been
quite satisfied with their own standards.

However, I do not want to press this matter further. T will turn instead
to a perfectly clear-cut case, the controversy about the “foundations of
mathematics.” In the late nineteenth and the carly twentieth centuries a
new branch of abstract mathematics, G. Cantor’s theory of sets, led into
difficulties. That is, certain reasonings led to contradiction; and, while
these reasonings were not in the central and “useful” part of set theory,
and always casy to spot by certain formal criteria, it was nevertheless
not clear why they should be deemed less set-theoretical than the “suc-
cessful” parts of the theory. Aside from the ex post insight that they
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there were certain indications how it might be attempted. Had this
scheme worked, it would have provided a most remarkable Justifica-
* tion of classical mathematics on the basis of the opposing intuition-
istic system itself! At least, this interpretation would have been legit-
imate in a system of the philosophy of mathematics which most
mathematicians were willing to accept, _
. After about a decade of attempts to carry ouf this program, Godel
produced a most remarkable result. This result cannot be stated
absolutely precisely without several clauses and caveats which are
too technical to be formulated here. Its essential import, however, was
this: If a system of mathematics does not lead into contradiction, then
this fact cannot be demenstrated with the procedures of that system.

Gddel’s proof satisfied the strictest criterion of mathematical rigor—

the intuitionistic one. Its influence on Hilbert’s program is somewhat

controversial, for reasons which again are too technical for this occa-
sion. My personal opinion, which is shared by many others, is, that

Gddel has shown that Hilbert’s program is essentially hopeless.

4. The main hope of a justification of classical mathematics—in the
sense of Hilbert or of Brouwer and Weyl—being gone, most mathe-
maticians decided to use that system anyway. After all, classical
mathematics was producing results which were both elegant and use-
ful, and, even though one could never again be absolutely certain of
its reliability, it stood on at least as sound a foundation as, for exam-
ple, the existence of the electron. Hence, if one was willing to accept
the sciences, one might as well accept the classical system of math-
ematics. Such views turned out to be acceptable even to some of the
original protagonists of the intuitionistic system. At present the con-
troversy about the “foundations” is certainty not closed, but it seems
most unlikely that the classical system should be abandoned by any
but a small minority.

Thave told the story of this controversy in such detail, because I think
that it constitutes the best caution against takirig the immovable rigor of
mathematics too much for granted. This happened in our own lifetime,
and I know myself how humiliatingly easily my own views regarding
the absolute mathematical truth changed during this episode, and how
they changed three times in succession!

W

I hope that the above three examples illustrate one-half of my thesis
sufficiently well—that much of the best mathematical inspiration
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Is mathematics actually practiced in the way in which an empirical sci-
ence is practiced? Or, more generally: What is the mathematician’s nor-
mal relationship to his subject? What are his criteria of success, of desir-
ability? What influences, what considerations, control and direct his
effort? :
 Letus see, then, in what respects the way in which the mathemati-
cian normally works differs from the mode of work in the natural sci-
ences. The difference between these, on one hand, and mathematics, on
the other, goes on, clearly increasing as one passes from the theoretical
disciplines to the experimental ones and then from the experimental dis-
ciplines to the descriptive ones. Let us therefore compare mathematics
with the category which lies closest to it—the theoretical disciplines,
And let us pick there the one which lies closest to mathematics, 1 hope
that you will not judge me too harshly if I fail to control the mathemat-
ical hubris and add: because it is most highly developed among all the-
oretical sciences—that is, theoretical physics. Mathematics and theoret-
ical physics have actvally a good deal in common. As I have pointed out
before, Euclid’s system of geometry was the prototype of the axiomat-
ic presentation of classical mechanics, and similar treatments dominate
phenomenological thermodynamics as well as certain phases of
Maxwell’s system of electrodynamics and also of special relativity.
Furthermore, the attitude that theoretical physics does not explain phe-
nomena, but only classifies and correlates, is today accepted by most
theoretical physicists. This means that the criterion of success for such
a theory is simply whether it can, by a simple and elegant classifying _
and correlating scheme, cover very many phenomena, which without
this scheme would seem complicated and heterogeneous, and whether
the scheme even covers phenomena which were not considered or even
not known at the time when the scheme was evolved. (These two latter
statements express, of course, the unifying and the predicting power of
a theory.) Now this criterion, as set forth here, is clearly to a great extent
of an aesthetical nature; for this reason it is very closely akin to the
mathematical criteria of success, which, as you shall see, are almost
entirely aesthetical. Thus we are now comparing mathematics with the
empirical science that lies closest to it and with which it has, as I hope
I have shown, much in common—with theoretical physics. The differ-
ences in the actual modus procedendi are nevertheless great and basic.
The aims of theoretical physics are in the main given from the “out- -
side,” in most cases by the needs of experimental physics, They almost
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to the decisive point: I think that it is correct to say that his criteria of
selection, and also those of success, are mainly aesthetical. I realize that
this assertion is controversial and that it is impossible to “prove” it, or
indeed to go very far in substantiating it, without analyzing numerous
specific, technical instances. This would again require a highly techni-
cal type of discussion, for which this is not the proper occasion. Suffice
it to say that the aesthetical character is even more prominent than in the
instance I mentioned above in the case of theoretical physics. One
expects a mathematical theorem or a mathematical theory not only to
describe and to classify in a simple and elegant way numerous and a
priori disparate special cases. One also expects “elegance” in its “archi-
tectural,” structural makeup. Ease in stating the problem, great difficul-
ty in getting hold of it and in all attempts at approaching it, then again
some very surprising twist by which the approach, or some part of the
approach, becomes easy, ete. Also, if the deductions are lengthy or com-
plicated, there should be some simple general principle involved, which
“explains” the complications and detours, reduces the apparent arbitrari-
ness to a few simple guiding motivations, etc. These criteria are clearly
those of any creative art, and the existence of some underlying empiri-
cal, worldly motif in the background—often in a very remote back-
ground—overgrown by aestheticizing developments and followed into a
multitude of labyrinthine variants, all this is much more akin to the
atmosphere of art pure and simple than to that of the empirical sciences.

You will note that I have not even mentioned a comparison of math-
ematics with the experimental or with the descriptive sciences. Here the
differences of method and of the general atmosphere are too obvious.

I think that it is a relatively good approximation to truth—which is
much too complicated to allow anything but approximations-—that
mathematical ideas originate in empirics, although the gencalogy is
sometimes long and obscure, But, once they are so conceived, the sub-
ject begins to live a peculiar life of its own and is better compared to a
creative one, governed by almost entirely aesthetical motivations, than
to anything else and, in particular, to an empirical science. There is,
however, a further point which, I believe, needs stressing. As a mathe-
matical discipline travels far from its empirical source, or still more, if
it is a second and third generation only indirectly inspired by ideas com-
ing from “reality,” it is beset third with very grave dangers, It becomes
more and more purely aestheticizing, more and more purely {’art pour
’art, This need not be bad, if the field is surrounded by correlated sub-




4

Part [II: Mathematics and Society
184 "

et empit i iscipline
j‘ects which still have closer empirical connecuons,l(l)r if ﬂhe if,‘:liped
. £ i ‘ ) we ]
i i f men with an exceptionally
is under the influence © _ e ong e
i ' that the subject will develop
taste. But there is a grave danger . lone e
line of least resistance, that the stream, 0 far from its source, W i

discipline - L always thought that the goal of science was to olo-
i multitude of insignificant branches, and that t.:h.e iscip _ : o EIE P goal of g
arate 1o 2 . sed mass of details and complexities. In other | B rify the human spivit. :
will become a disorganized & ©7 L sice, or after much — Karl Gustav Jacobi (18041851
words, at a great distance from its empirical source, | _ _

* “abstract” inbreeding, a mathematical ﬁubjlem iz;il if}?egneitosii:\fg:gf;s
. N ion the style is wsually classical, .
uorl: Atr;tl};fl n}bc:r!:cll?lr;, thent}trhe danger signal is up. It would be easy té h . f h I
o oxatmples 0 trac specific evolutions into the baroque and the very The Community of Scholars
Ve o 3y . . .
ﬁigh baroque, but this, again, would be 100 teChmg?L iy remedy seems L : '
" in any event, wheneve this stage 1:hrea;l]1:516,.t32 (;Ieligjection S André Lichnerowicz 3
to me to be the rejuvenating return to the s ) L cessary .
i mpitical ideas. [ am conviniced that this was a ne _ G
zf)rlilsiiiilﬁri(:lz;s:rve the freshness and the vitality of the subject and André Lichnerowicz (19151 998) was born :
that this will remain equally true in the future. in Bourbon I'Archambault a town in the K
Auvergne located in south central France 1
near Clermond-Ferrand. It is a picturesque
town boasting many spas.

One of his ancestors was from Poland— :
hence his Polish-sounding name. His parents |
were both teachers; his father was secretary -
general -of the Alliance Francaise while his
mathematician mother was from the Ecole
Normale of Sévres,

In 1939 he wrote a thesis in differential
geometry and general relativity theory—
: subjects that held his interest throughout his
professional life and to which he made numerous fundamental contribu-
tions. In 1941 he was appointed to a pasition in Strashourg but when the
City was occupied by the advancing German armies he went to Clermont- |
Ferrand. A German raid on this town resulted in his capture but he managed '
to escape the invading forces. '

He was a very energetic and stimulating person of wide interests; he
could discourse entertainingly on a wide variety of subjects—French history,
literature, geography and of course French wines. Together with his Peruvian -
wife who taught Spanish, they formed a hospitable and stimulating couple. |
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