LOGIC

1. Make truth tables for the statements $P \lor (\neg P)$ and $P \land (\neg P)$.

Definition. A statement is a **contradiction** if its only possible truth value is False. A statement is a **tautology** if its only possible truth value is True.

- 2. Fill in the blanks with a statement (written in English) that makes the entire statement true.
 - a) $[P \land (\neg P)] \implies$ ______ b) _____ $\implies [P \lor (\neg P)]$
- **3.** Make a truth table for the statement $P \implies (P \lor Q)$.

4. Make a truth table for the statement $[(P \implies Q) \land P] \implies Q$ (this is known as Modus Ponens).

5. The statement in problem 3 might be expressed in English as "If P is true, then we know that either P or Q (or both) must be true." Produce a similar English version of Modus Ponens (the statement in problem 4).

Date: September 13, 2021.

- 6. Consider the statement, "In 2018 Dr. Axon gave an A to any student who got a perfect score on the final exam."
 - a) Express this as a statement of the form $P \implies Q$.
 - b) Suppose Adrian got a perfect score on the final exam. What can you conclude about Adrian's grade in the class? (You're almost certainly using Modus Ponens to make this deduction).
 - c) Blair didn't get an A in Prof. Axon's class. What can you conclude about Blair's score on the final exam?
 - d) You probably just used Modus Tollens, another very important tautology. Apply the same reasoning to fill in the blanks below to get Modus Tollens ...
 - ... in English:
 - If P implies Q, and we know that Q is not true, then _____
 - ... in symbols:

$$[(P \implies Q) \land (\neg Q)] \implies ____$$

Definition. The converse of $P \implies Q$ is $Q \implies P$. The contrapositive of $P \implies Q$ is $(\neg Q) \implies (\neg P)$.

- 7. Write a true statement that ...
 - a) ... has a true converse.
 - b) ... has a false converse.
 - c) ... has a true contrapositive.
 - d) ... has a false contrapositive.¹

¹Or use a truth table to show that $P \implies Q$ is logically equivalent to its contrapositive