INDUCTION II ... AND RELATIONS

1. Find the flaw in the following proof.

Proposition 1. If $n \in \mathbb{N}$, then n is odd

Proof by strong induction. Base case: n = 1. Clearly n is odd.

Now suppose that $k \in \mathbb{N}$ and that if $l \in \mathbb{N}$ and $l \leq k$, then l is odd. Consider that k + 1 = (k - 1) + 2and that $k - 1 \leq k$. By IH k - 1 is odd. Hence k - 1 = 2a + 1 for some integer a. We now have

$$k + 1 = (k - 1) + 2$$

= (2a + 1) + 2
= 2(a + 1) + 1

Since a + 1 is an integer, we have shown that k + 1 is odd.

Therefore, by strong induction, every natural number is odd.

2. Complete all the base cases needed to make the following proof work.

Theorem. If $n \in \mathbb{N}$, then $12|(n^4 - n^2)$.

Proof by strong induction. We will defy tradition and begin with the inductive step. Let $k \in \mathbb{N}$ and suppose that if $l \in \mathbb{N}$ and $l \leq k$, then $12|(l^4 - l^2)$. We wish to prove that $12|((k+1)^4 - (k+1)^2)$.

Let l = k - 5. Then $l \le k$, so by the inductive hypothesis $12|(l^4 - l^2)$. Hence there is an integer a such that $l^4 - l^2 = 12a$. Then

$$(k+1)^4 - (k+1)^2 = (l+6)^4 - (l+6)^2$$

= $l^4 + 24l^3 + 216l^2 + 864l + 1296 - (l^2 + 12l + 63)$
= $(l^4 - l^2) + 24l^3 + 216l^2 + 852l + 1260$
= $12a + 24l^3 + 216l^2 + 852l + 1260$
= $12(a + 2l^3 + 18l^2 + 71l + 105).$

It follows that $12|((k+1)^4 - (k+1)^2).$

We now must establish the base cases to complete the proof.

Date: November 17, 2021.

Definition. Let R be a relation on the set A.

- a) R is **reflexive** if $\forall x \in A, xRx$.
- b) R is symmetric if $\forall x, y \in A, xRy \implies yRx$.
- c) R is **transitive** if $\forall x, y, z \in A$, $(xRy \land yRz) \implies xRz$.

3. Which of the three properties in the definition does the relation of < (on \mathbb{R}) have?

4. Which of the three properties in the definition does the relation of divides (on \mathbb{Z}) have?

5. Which of the three properties in the definition does the relation of congruence modulo 5 (on \mathbb{Z}) have?

Challenge. Prove that you are correct in problems 3-5.