FUNCTIONS

1. Let A, B, and C be sets. Suppose $f: A \rightarrow B$ and $g: B \rightarrow C$ are both surjective. Finish proving that $g \circ f: A \rightarrow C$ is surjective.
Proof. Let A, B, and C be sets. Suppose $f: A \rightarrow B$ and $g: B \rightarrow C$ are both surjective. If $C=\emptyset$, then $g \circ f$ is trivially surjective. To deal with the other case, suppose $C \neq \emptyset$. Let $c \in C$.

Thus $(g \circ f)(a)=c$. Therefore $g \circ f$ is surjective.
2. Let A, B, and C be sets. Suppose $f: A \rightarrow B$ and $g: B \rightarrow C$ are both injective. Finish proving that $g \circ f: A \rightarrow C$ is injective.
Proof. Let A, B, and C be sets. Suppose $f: A \rightarrow B$ and $g: B \rightarrow C$ are both injective. If $A=\emptyset$, then $g \circ f$ is trivially injective. To deal with the other case, suppose $A \neq \emptyset$. Let $a_{1}, a_{2} \in A$ and suppose $(g \circ f)\left(a_{1}\right)=(g \circ f)\left(a_{2}\right)$.

Thus $a_{1}=a_{2}$. Therefore $g \circ f$ is injective.
Definition. If $f: A \rightarrow B$ is both injective and surjective, then it is called a bijection.
If there is a bijection between sets A and B, then the sets must be the same size. For example, Let $A=\{a, b, c\}$ and let $B=\{1,2,3\}$. It is easy to find bijection between A and $B:\{(a, 1),(b, 2),(c, 3)\}$. This turns out to give a good definition of the size (or cardinality) of a set.
Definition. Let A and B be sets. Then we say A and B have the same cardinality and write $|A|=|B|$ if there is a bijection between A and B.

The definition matches our expectations for finite sets. Things get a little stranger when dealing with infinite sets.
3. Let $A=\{2 n: n \in \mathbb{Z}\}$ and $B=\{2 n+1: n \in \mathbb{Z}\}$. For each of the following statements find a bijection that proves the statement is true:
a) $|A|=|B|$
b) $|A|=|\mathbb{Z}|$
c) $|\mathbb{N}|=|\mathbb{Z}|$

Theorem (Shröder-Bernstein). Let A and B be sets. If there is an injective function from A to B and another injective function from B to A, then there is a bijection between A and B.
4. We can use the Shröder-Bernstein theorem to prove that $|\mathbb{Z}|=|\mathbb{Q}|$. We just need to:
a) Produce an injective function from \mathbb{Z} to \mathbb{Q}.
b) Produce an injective function from \mathbb{Q} to \mathbb{Z}.
5. Prove that $|\mathbb{N}|=|\mathbb{Q}|$.
6. Do you think all infinite sets have the same cardinality?

