GEOMETRY (FRACTAL AND OTHERWISE)

1. A well-known geometry theorem states that the sum of the interior angles of a triangle must be 180°. This problem guides you through finding a similar formula for the sum of the interior angles of any convex polygon. Convex means that every interior angle is less than 180°, so the first quadrilateral below is convex, but the second is not ${ }^{\text {D }}$

a) Determine the sum of the interior angles of a convex quadrilateral (hint: divide it into two triangles).
b) Determine the sum of the interior angles of a convex pentagon (hint: divide it into a triangle and a quadrilateral, then use your formula from part a.
c) Find a general formula for the sum of interior angles of a convex polygon with $n \geq 3$ sides, then prove that your formula always works.
${ }^{1}$ Technically, convex means that the straight line between any two points of the polygon is entirely inside the polygon

Definition. We construct the Cantor middle-thirds set as follows. Define the following sets (as unions of intervals in \mathbb{R}):

$$
\begin{aligned}
C_{0} & =[0,1] \\
C_{1} & =\left[0, \frac{1}{3}\right] \cup\left[\frac{2}{3}, 1\right] \\
C_{2} & =\left[0, \frac{1}{9}\right] \cup\left[\frac{2}{9}, \frac{1}{3}\right] \cup\left[\frac{2}{3}, \frac{7}{9}\right] \cup\left[\frac{8}{9}, 1\right] \\
& \vdots
\end{aligned}
$$

In general, C_{k+1} is formed by removing the open middle third of each interval in C_{k}. The Cantor middlethirds set is

$$
\mathcal{C}=\bigcap_{k=0}^{\infty} C_{k}
$$

2. Prove or disprove the following statements about \mathcal{C}.
a) $\mathcal{C}=\emptyset$
b) $\forall n \in \mathbb{N},\left(0, \frac{1}{2^{n}}\right) \nsubseteq \mathcal{C}$

Definition. Any real number can be expressed in ternary, which is like binary but with 3 possible values for each digit. For example, the ternary number 201 is

$$
\left(2 \times 3^{2}\right)+\left(0 \times 3^{1}\right)+\left(1 \times 3^{0}\right)=18+0+1=19
$$

And the ternary number 0.201 is

$$
\left(2 \times 3^{-1}\right)+\left(0 \times 3^{-2}\right)+\left(1 \times 3^{-3}\right)=\frac{2}{3}+\frac{0}{9}+\frac{1}{27}=\frac{19}{27} .
$$

Proposition 1. Let $x \in[0,1]$. Then $x \in \mathcal{C}$ if and only if x can be written as a ternary number using only the digits 0 and 2.
3. Is $1 / 4$ in the Cantor set?
4. Is the Cantor set countable?

Challenge. Prove proposition 1.

