
Proposition 1. Let x ∈ R. If x > 0, then x +
1

x
≥ 2.

Definition 1. suppose that f and g are functions such that the two limits lim
x→a

f(x) and lim
x→a

g(x) exist, and that

k is a constant. Then,
1) lim

x→a
k = k

2) lim
x→a

f(x) + g(x) = lim
x→a

f(x) + lim
x→a

g(x)

Proof. Let x ∈ R and suppose x + 1
x < 2. Then we can take the limit as x approaches −∞ of both sides to get:

lim
x→−∞

x +
1

x
< lim

x→−∞
2. Using Definition 1, this can be rewritten as x + 0 < 2 or simply x < 2. Hence, x must be

less than 2 in order for this proposition to hold. Since 0 < 2, we can therefore conclude that x ≤ 0.
�

Comments:

Proposition 1. Let x ∈ R. If x > 0, then x +
1

x
≥ 2.

Proof. Let x ∈ R.
Assume x is positive and x 6= 0.
Then, x + 1

x ≥ 2

x2 + 1 ≥ 2x
x2 − 2x + 1 ≥ 0
(x− 1)2 ≥ 0

Thus, the left hand side will always be greater than or equal to 0.
Therefore, x + 1

x ≥ 2. �

Comments:
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Proposition 2. Suppose a ∈ Z. If a is odd, then 8 | (a2 − 1).

Proof. Let a ∈ Z and suppose a is odd. By definition there exists c ∈ Z such that a = 2c + 1. Hence a2 − 1 =
(2c+1)2−1 = (4c2 +4c+1)−1 = 4c2 +4c. Then a2−1 = 4c(c+1). And c(c+1) is the product of two consecutive
integers and is therefore even. Let c(c + 1) = 2p, p ∈ Z. Thus a2 − 1 = 4(2p) = 8p, p ∈ Z. Therefore by definition
of divides, 8|(a2 − 1).

�

Comments:

Proposition 2. Suppose a ∈ Z. If a is odd, then 8 | (a2 − 1).

Suppose a ∈ Z. If a is odd, then 8 | (a2 − 1).
Proof. Let a ∈ Z and suppose a is odd.
Thus, there is an integer b such that a = 2b + 1 by definition of an odd number.
By definition of divisibility, there is an integer c such that 8c = (a2 − 1).
Then, by substitution, 8c = ((2b + 1)2 − 1), 8c = ((4b2 + 4b + 1)− 1), 8c = 4b2 + 4b, 4(2c) = 4(b2 + b).
Thus, 8 | (a2 − 1).

Comments:
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Proposition 2. Suppose a ∈ Z. If a is odd, then 8 | (a2 − 1).

Proof. Let a ∈ Z and also let a be odd. By definition ∃b ∈ Z, a = 2b + 1. By definition, ∃m ∈ Z, b = 2m. Then,
b + 1 = 2m + 1. Then, c = ((2m)(2m + 1))/2 = (4n2 + 2n)/2 = 2(2n2 + n)/2 = 2n2 + n. Since 2n2 + n is an
integer, we conclude, 8|(a2 − 1). �

Comments:

Proposition 2. Suppose a ∈ Z. If a is odd, then 8 | (a2 − 1).

Proof. Let a ∈ Z and suppose a is odd. �

Proof. By definition (of divides), there is ∃n ∈ Z such that 8n = a2 − 1. �

Proof. Then, by definition (of odd), there is ∃m ∈ Z such that a = 2m + 1. �

Proof. Substitute a into 8n = a2 − 1 ≡ 8n = (2m + 1)2 + 1. �

Proof. 8n = 4m2 + 4m + 1− 1 �

Proof. 8n = 4(m2 + m) �

Proof. WLOG, Suppose m is even.
Then by definition (of even), there is ∃x ∈ Z such that m = 2x �

Proof. 8n = 4((2x)2 + 2x) �

Proof. 8n = 4(4x2 + 2x) �

Proof. 8n = 8(2x2 + x) where 2x2 + x ∈ Z �

Proof. Thus, 8 | (a2 − 1) �

Comments:
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Proposition 2. Suppose a ∈ Z. If a is odd, then 8 | (a2 − 1).

Proof. Let a ∈ Z and suppose a is odd. By definition (of odd) there is an integer n such that a = 2n + 1. Then
a2 − 1 = (2n + 1)2 − 1 = 4n2 + 4n + 1 − 1 = 4(n2 + n). Hence a2 − 1 = 4(n2 + n). By definition (of divides)
there is an integer m such that 8m = a2 − 1. Then 8m = a2 − 1 = 4(n2 + n). Consequently 2m = n2 + n. Thus
2m = n2 + n and n2 + n ∈ Z. Therefore 8 | (a2 − 1). �

Comments:

Proposition 2. Suppose a ∈ Z. If a is odd, then 8 | (a2 − 1).

Suppose a is odd, so a=2n+1 for some integer n. Then (a2 − 1) = (2n + 1)2 − 1 which equals (4n2 + 4n) which
equals (4(n2 + n)) which equals 4n(n+1). So, now we have (a2 − 1) = 4n(n + 1). To get that factor of 8, we can
see that either n or n+1 are even, so n(n+1) must be even. From this, we can have n(n+1)=2b for some integer b.
Therefore, we have (a2 − 1 = 4n(n + 1)) which equals 4(2b)=8b. Therefore, (8b = n2 − 1) which by the definition
of divides means (8|(n2 − 1)).

Comments:
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Proposition 2. Suppose a ∈ Z. If a is odd, then 8 | (a2 − 1).

Proof. Let a ∈ Z and suppose a is odd.
By definition, ∃n ∈ Z such that 2n + 1 = a.
Now, a2 − 1 = (2n + 1)2 − 1 = 4n2 + 4n + 1− 1 = 4n2 + 4n = 4(n2) + 4(n). Since n2, n ∈ Z, 4|n2 and 4|n.
By definition, ∃x ∈ Z such that 4x = n.
So a2 − 1 = 4(n2) + 4(n) = 4(4x)2 + 4(4x) = 64x2 + 16x = 8(8x2 + 2x), where (8x2 + 2x) ∈ Z.
Therefore, 8|(a2 − 1). �

Comments:

Proposition 2. Suppose a ∈ Z. If a is odd, then 8 | (a2 − 1).

Definitions:
Definition 1: a is odd if there is c ∈ Z, such that a = 2c + 1.
Definition 2: a divides b, written a|b, if there is c ∈ Z, such that mc = a.
Proposition 1.
Suppose a ∈ Z, if a is odd, then 8|(a2 − 1).
Proof. Let a ∈ Z and suppose a is odd.
By definition of odd, there is an integer c, such that a = 2c + 1.
By definition of divides, a|b, if there is an interger c, such that mc = a.
Then, when substituted, a2 − 1 = (2c + 1)2 − 1 = 4c2 + 4c = 8(1/2c2 + 1/2c).
Where 1/2c2 + 1/2c is an integer.
Therefore, 8|(a2 − 1).

Comments:
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Proposition 2. Suppose a ∈ Z. If a is odd, then 8 | (a2 − 1).

Proof. Let a ∈ Z and suppose a is odd. By definition, there is m ∈ Z such that a = 2m + 1. Then, we see that
8|(a2 − 1) = 8|((2m + 1)2 − 1) = 8|4m2 + 4m = 8|4(m2 + m). We can also see that m2 + m is an even number
because 2|m2. Therefore, because m2 + m ∈ Z, we can conclude that 8|a2 − 1 �
Comments:

Proposition 2. Suppose a ∈ Z. If a is odd, then 8 | (a2 − 1).

Proof:
Let a ∈ Z. Suppose a is odd.
By definition, c ∈ Z such that a = 2c + 1
Then, (a2 − 1) = (2c + 1)2 − 1 = 4c2 + 4c + 1− 1 = 4c2 + 4c = 2(2c2 + 2c)

Comments:
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Proposition 2. Suppose a ∈ Z. If a is odd, then 8 | (a2 − 1).

Suppose a is an element of a set of integers and assume a is odd.
By definition, of odd, there is an integer c such that a = 2c + 1..
Thus, a2 − 1 = (2c + 1)2 − 1..
This is equivalent to 4c2 + 4c, which equals 4c(c + 1)..
So far, a2 − 1 = 4c(c + 1), but we want a factor of 8 instead of 4.
Notice that c or c + 1 must be even in order for c(c + 1) to be even.
Hence, c(c + 1) = 2k, for some integer k.
Now, a2 − 1 = 4c(c + 1), which equals 4(2k) = 8k..
a2 − 1 = 8k is the same as 8|(a2 − 1). Thus, the original statement holds.

Comments:

Proposition 2. Suppose a ∈ Z. If a is odd, then 8 | (a2 − 1).

Proof. Let a ∈ Z and suppose that a is odd. By definition a = 2c + 1 where c ∈ Z.

a2 − 1 = (2c + 1)2 − 1

= 4c2 + 4c + 1− 1

= 4c2 + 4c

= 4(c2 + c)

Case 1. If c is even, c2 + c is also even. By definition c = 2n where n ∈ Z. (2n)2 + 2n = 4n2 + 2n = 2(n2 + n)
where (n2 + n) is an integer. Therefore c2 + c is even by definition.

Case 2. If c is odd then c2 + c is even. By definition c = 2n + 1 where n ∈ Z. c2 + c = (2n + 1)2 + (2n + 1) =
(4n2 + 4n + 1) + (2n + 1) = 4n2 + 6n + 2 = 2(2n2 + 3n + 1) Where (2n2 + 3n + 1) is an integer.
Thus c2 + c = 2(2n2 + 3n + 1) and therefore c2 + c is even by definition.

Since c2 + c is even whether c is odd or even, then 2|(c2 + c). Plugging this into 4(c2) + c we conclude that
8|4(c2 + c) and therefore 8|a2 − 1 if a is odd. �

Comments:
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Proposition 2. Suppose a ∈ Z. If a is odd, then 8 | (a2 − 1).

Proof 1: Suppose a ∈ Z. If a is odd, then 8 | (a2 − 1).
Contrapositive: If 8 does not divide mid(a2 − 1), then a is even.
By definition there exists some c ∈ Z such that 8c 6=| (a2 − 1).
8c + 1 6= a2

2(4c + 1) = a2

Thus, a2 is even. By definition there exists some c ∈ Z such that a2 = 2c
2 | (a2). 2 | (a). Thus a is even.
This proves the contrapositive.

Comments:

Proposition 2. Suppose a ∈ Z. If a is odd, then 8 | (a2 − 1).

Proof. Suppose a ∈ Z such that a is odd. By definition, there is m ∈ Z such that a = 2m + 1. Then,

a2 − 1 = (2m + 1)2 − 1

= 4m2 + 4m + 1− 1

= 8(
m2 + m

2
) = a2 − 1

(1)

Therefore 8|(a2 − 1) �

Comments:


