Proposition 1. Let $x \in \mathbb{R}$. If $x>0$, then $x+\frac{1}{x} \geq 2$.
Definition 1. suppose that \mathbf{f} and \mathbf{g} are functions such that the two limits $\lim _{x \rightarrow a} f(x)$ and $\lim _{x \rightarrow a} g(x)$ exist, and that \mathbf{k} is a constant. Then,

1) $\lim _{x \rightarrow a} k=k$
2) $\lim _{x \rightarrow a} f(x)+g(x)=\lim _{x \rightarrow a} f(x)+\lim _{x \rightarrow a} g(x)$

Proof. Let $x \in \mathbb{R}$ and suppose $x+\frac{1}{x}<2$. Then we can take the limit as x approaches $-\infty$ of both sides to get: $\lim _{x \rightarrow-\infty} x+\frac{1}{x}<\lim _{x \rightarrow-\infty} 2$. Using Definition 1. this can be rewritten as $x+0<2$ or simply $x<2$. Hence, x must be less than 2 in order for this proposition to hold. Since $0<2$, we can therefore conclude that $x \leq 0$.

Comments:

Proposition 1. Let $x \in \mathbb{R}$. If $x>0$, then $x+\frac{1}{x} \geq 2$.
Proof. Let $x \in \mathbb{R}$.
Assume x is positive and $x \neq 0$.
Then, $x+\frac{1}{x} \geq 2$

$$
\begin{aligned}
& x^{2}+1 \geq 2 x \\
& x^{2}-2 x+1 \geq 0 \\
& (x-1)^{2} \geq 0
\end{aligned}
$$

Thus, the left hand side will always be greater than or equal to 0 .
Therefore, $x+\frac{1}{x} \geq 2$.

Comments:

Proposition 2. Suppose $a \in \mathbb{Z}$. If a is odd, then $8 \mid\left(a^{2}-1\right)$.
Proof. Let $a \in \mathbb{Z}$ and suppose a is odd. By definition there exists $c \in \mathbb{Z}$ such that $a=2 c+1$. Hence $a^{2}-1=$ $(2 c+1)^{2}-1=\left(4 c^{2}+4 c+1\right)-1=4 c^{2}+4 c$. Then $a^{2}-1=4 c(c+1)$. And $c(c+1)$ is the product of two consecutive integers and is therefore even. Let $c(c+1)=2 p, p \in \mathbb{Z}$. Thus $a^{2}-1=4(2 p)=8 p, p \in \mathbb{Z}$. Therefore by definition of divides, $8 \mid\left(a^{2}-1\right)$.

Comments:

Proposition 2. Suppose $a \in \mathbb{Z}$. If a is odd, then $8 \mid\left(a^{2}-1\right)$.
Suppose $a \in \mathbb{Z}$. If a is odd, then $8 \mid\left(a^{2}-1\right)$.
Proof. Let $a \in \mathbb{Z}$ and suppose a is odd.
Thus, there is an integer b such that $a=2 b+1$ by definition of an odd number.
By definition of divisibility, there is an integer c such that $8 c=\left(a^{2}-1\right)$.
Then, by substitution, $8 c=\left((2 b+1)^{2}-1\right), 8 c=\left(\left(4 b^{2}+4 b+1\right)-1\right), 8 c=4 b^{2}+4 b, 4(2 c)=4\left(b^{2}+b\right)$.
Thus, $8 \mid\left(a^{2}-1\right)$.

Comments:

Proposition 2. Suppose $a \in \mathbb{Z}$. If a is odd, then $8 \mid\left(a^{2}-1\right)$.
Proof. Let $a \in \mathbb{Z}$ and also let a be odd. By definition $\exists b \in \mathbb{Z}, a=2 b+1$. By definition, $\exists m \in \mathbb{Z}, b=2 m$. Then, $b+1=2 m+1$. Then, $c=((2 m)(2 m+1)) / 2=\left(4 n^{2}+2 n\right) / 2=2\left(2 n^{2}+n\right) / 2=2 n^{2}+n$. Since $2 n^{2}+n$ is an integer, we conclude, $8 \mid\left(a^{2}-1\right)$.

Comments:

Proposition 2. Suppose $a \in \mathbb{Z}$. If a is odd, then $8 \mid\left(a^{2}-1\right)$.
Proof. Let $a \in \mathbb{Z}$ and suppose a is odd.
Proof. By definition (of divides), there is $\exists n \in \mathbb{Z}$ such that $8 n=a^{2}-1$.
Proof. Then, by definition (of odd), there is $\exists m \in \mathbb{Z}$ such that $a=2 m+1$.
Proof. Substitute a into $8 n=a^{2}-1 \equiv 8 n=(2 m+1)^{2}+1$.
Proof. $8 n=4 m^{2}+4 m+1-1$
Proof. $8 n=4\left(m^{2}+m\right)$
Proof. WLOG, Suppose m is even.
Then by definition (of even), there is $\exists x \in \mathbb{Z}$ such that $m=2 x$
Proof. $8 n=4\left((2 x)^{2}+2 x\right)$
Proof. $8 n=4\left(4 x^{2}+2 x\right)$
Proof. $8 n=8\left(2 x^{2}+x\right)$ where $2 x^{2}+x \in \mathbb{Z}$
Proof. Thus, $8 \mid\left(a^{2}-1\right)$

Comments:

Proposition 2. Suppose $a \in \mathbb{Z}$. If a is odd, then $8 \mid\left(a^{2}-1\right)$.
Proof. Let $a \in \mathbb{Z}$ and suppose a is odd. By definition (of odd) there is an integer n such that $a=2 n+1$. Then $a^{2}-1=(2 n+1)^{2}-1=4 n^{2}+4 n+1-1=4\left(n^{2}+n\right)$. Hence $a^{2}-1=4\left(n^{2}+n\right)$. By definition (of divides) there is an integer m such that $8 m=a^{2}-1$. Then $8 m=a^{2}-1=4\left(n^{2}+n\right)$. Consequently $2 m=n^{2}+n$. Thus $2 m=n^{2}+n$ and $n^{2}+n \in \mathbb{Z}$. Therefore $8 \mid\left(a^{2}-1\right)$.

Comments:

Proposition 2. Suppose $a \in \mathbb{Z}$. If a is odd, then $8 \mid\left(a^{2}-1\right)$.
Suppose a is odd, so $\mathrm{a}=2 \mathrm{n}+1$ for some integer n . Then $\left(a^{2}-1\right)=(2 n+1)^{2}-1$ which equals $\left(4 n^{2}+4 n\right)$ which equals $\left(4\left(n^{2}+n\right)\right)$ which equals $4 \mathrm{n}(\mathrm{n}+1)$. So, now we have $\left(a^{2}-1\right)=4 n(n+1)$. To get that factor of 8 , we can see that either n or $n+1$ are even, so $n(n+1)$ must be even. From this, we can have $n(n+1)=2 b$ for some integer b. Therefore, we have $\left(a^{2}-1=4 n(n+1)\right)$ which equals $4(2 \mathrm{~b})=8 \mathrm{~b}$. Therefore, $\left(8 b=n^{2}-1\right)$ which by the definition of divides means $\left(8 \mid\left(n^{2}-1\right)\right)$.

Comments:

Proposition 2. Suppose $a \in \mathbb{Z}$. If a is odd, then $8 \mid\left(a^{2}-1\right)$.
Proof. Let $a \in \mathbb{Z}$ and suppose a is odd.
By definition, $\exists n \in \mathbb{Z}$ such that $2 n+1=a$.
Now, $a^{2}-1=(2 n+1)^{2}-1=4 n^{2}+4 n+1-1=4 n^{2}+4 n=4\left(n^{2}\right)+4(n)$. Since $n^{2}, n \in \mathbb{Z}, 4 \mid n^{2}$ and $4 \mid n$.
By definition, $\exists x \in \mathbb{Z}$ such that $4 x=n$.
So $a^{2}-1=4\left(n^{2}\right)+4(n)=4(4 x)^{2}+4(4 x)=64 x^{2}+16 x=8\left(8 x^{2}+2 x\right)$, where $\left(8 x^{2}+2 x\right) \in \mathbb{Z}$.
Therefore, $8 \mid\left(a^{2}-1\right)$.

Comments:

Proposition 2. Suppose $a \in \mathbb{Z}$. If a is odd, then $8 \mid\left(a^{2}-1\right)$.
Definitions:
Definition 1: a is odd if there is $c \in \mathbb{Z}$, such that $a=2 c+1$.
Definition 2: a divides b , written $a \mid b$, if there is $c \in \mathbb{Z}$, such that $m c=a$.
Proposition 1.
Suppose $a \in \mathbb{Z}$, if a is odd, then $8 \mid\left(a^{2}-1\right)$.
Proof. Let $a \in \mathbb{Z}$ and suppose a is odd.
By definition of odd, there is an integer c, such that $a=2 c+1$.
By definition of divides, $a \mid b$, if there is an interger c , such that $m c=a$.
Then, when substituted, $a^{2}-1=(2 c+1)^{2}-1=4 c^{2}+4 c=8\left(1 / 2 c^{2}+1 / 2 c\right)$.
Where $1 / 2 c^{2}+1 / 2 c$ is an integer.
Therefore, $8 \mid\left(a^{2}-1\right)$.

Comments:

Proposition 2. Suppose $a \in \mathbb{Z}$. If a is odd, then $8 \mid\left(a^{2}-1\right)$.
Proof. Let $a \in \mathbb{Z}$ and suppose a is odd. By definition, there is $m \in \mathbb{Z}$ such that $a=2 m+1$. Then, we see that $8\left|\left(a^{2}-1\right)=8\right|\left((2 m+1)^{2}-1\right)=8\left|4 m^{2}+4 m=8\right| 4\left(m^{2}+m\right)$. We can also see that $m^{2}+m$ is an even number because $2 \mid m^{2}$. Therefore, because $m^{2}+m \in \mathbb{Z}$, we can conclude that $8 \mid a^{2}-1 \square$

Comments:

Proposition 2. Suppose $a \in \mathbb{Z}$. If a is odd, then $8 \mid\left(a^{2}-1\right)$.
Proof:
Let a $\in \mathbb{Z}$. Suppose a is odd.
By definition, $\mathrm{c} \in \mathbb{Z}$ such that $a=2 c+1$
Then, $\left(a^{2}-1\right)=(2 c+1)^{2}-1=4 c^{2}+4 c+1-1=4 c^{2}+4 c=2\left(2 c^{2}+2 c\right)$

Comments:

Proposition 2. Suppose $a \in \mathbb{Z}$. If a is odd, then $8 \mid\left(a^{2}-1\right)$.
Suppose a is an element of a set of integers and assume a is odd.
By definition, of odd, there is an integer c such that $a=2 c+1$..
Thus, $a^{2}-1=(2 c+1)^{2}-1$..
This is equivalent to $4 c^{2}+4 c$, which equals $4 c(c+1)$..
So far, $a^{2}-1=4 c(c+1)$, but we want a factor of 8 instead of 4 .
Notice that c or $c+1$ must be even in order for $c(c+1)$ to be even.
Hence, $c(c+1)=2 k$, for some integer k .
Now, $a^{2}-1=4 c(c+1)$, which equals $4(2 k)=8 k$.
$a^{2}-1=8 k$ is the same as $8 \mid\left(a^{2}-1\right)$. Thus, the original statement holds.
Comments:

Proposition 2. Suppose $a \in \mathbb{Z}$. If a is odd, then $8 \mid\left(a^{2}-1\right)$.
Proof. Let $a \in \mathbb{Z}$ and suppose that a is odd. By definition $a=2 c+1$ where $c \in \mathbb{Z}$.

$$
\begin{aligned}
a^{2}-1 & =(2 c+1)^{2}-1 \\
& =4 c^{2}+4 c+1-1 \\
& =4 c^{2}+4 c \\
& =4\left(c^{2}+c\right)
\end{aligned}
$$

Case 1. If c is even, $c^{2}+c$ is also even. By definition $c=2 n$ where $n \in \mathbb{Z} .(2 n)^{2}+2 n=4 n^{2}+2 n=2\left(n^{2}+n\right)$ where $\left(n^{2}+n\right)$ is an integer. Therefore $c^{2}+c$ is even by definition.
Case 2. If c is odd then $c^{2}+c$ is even. By definition $c=2 n+1$ where $n \in \mathbb{Z} . c^{2}+c=(2 n+1)^{2}+(2 n+1)=$ $\left(4 n^{2}+4 n+1\right)+(2 n+1)=4 n^{2}+6 n+2=2\left(2 n^{2}+3 n+1\right)$ Where $\left(2 n^{2}+3 n+1\right)$ is an integer.
Thus $c^{2}+c=2\left(2 n^{2}+3 n+1\right)$ and therefore $c^{2}+c$ is even by definition.
Since $c^{2}+c$ is even whether c is odd or even, then $2 \mid\left(c^{2}+c\right)$. Plugging this into $4\left(c^{2}\right)+c$ we conclude that $8 \mid 4\left(c^{2}+c\right)$ and therefore $8 \mid a^{2}-1$ if a is odd.

Comments:

Proposition 2. Suppose $a \in \mathbb{Z}$. If a is odd, then $8 \mid\left(a^{2}-1\right)$.
Proof 1: Suppose $a \in \mathbb{Z}$. If a is odd, then $8 \mid\left(a^{2}-1\right)$.
Contrapositive: If 8 does not divide $\operatorname{mid}\left(a^{2}-1\right)$, then a is even.
By definition there exists some $c \in \mathbb{Z}$ such that $8 c \neq \mid\left(a^{2}-1\right)$.
$8 c+1 \neq a^{2}$
$2(4 c+1)=a^{2}$
Thus, a^{2} is even. By definition there exists some $c \in \mathbb{Z}$ such that $a^{2}=2 c$
$2\left|\left(a^{2}\right) .2\right|(a)$. Thus a is even.
This proves the contrapositive.

Comments:

Proposition 2. Suppose $a \in \mathbb{Z}$. If a is odd, then $8 \mid\left(a^{2}-1\right)$.
Proof. Suppose $a \in \mathbb{Z}$ such that a is odd. By definition, there is $m \in \mathbb{Z}$ such that $a=2 m+1$. Then,

$$
\begin{align*}
& a^{2}-1=(2 m+1)^{2}-1 \\
& =4 m^{2}+4 m+1-1 \tag{1}\\
& =8\left(\frac{m^{2}+m}{2}\right)=a^{2}-1
\end{align*}
$$

Therefore $8 \mid\left(a^{2}-1\right)$

Comments:

