By simplifying, $\sqrt[n]{2} = 2^{\frac{1}{n}}$.
Then, by definition, $2^{\frac{1}{n}}$ is rational if $a, b \in \mathbb{Z}$ where $\frac{a}{b} = 2^{\frac{1}{n}}$ such that $b \neq 0$.
Observe that $2^{\frac{1}{n}}$ can only be rational when $n < 2$ where $n \in \mathbb{N}$. Thus, $n = 1$.
When $n=1, 2^{\frac{1}{n}}=\frac{a}{b}$ is true.
Therefore, if $n \ge 2$, then $\sqrt[n]{2}$ is irrational. Comments:
Comments:
Proposition 2. If $a \in \mathbb{Z}$, then $4 \nmid (a^2 - 3)$.
Proof. Let $a \in \mathbb{Z}$.
Case 1: Suppose a is even. By definition, there is $a \in \mathbb{Z}$ such that $a = 2c$. We can see that $4 ((2c)^2 - 3) =$
$4 (4c^2-3)$. This shows us that 4 does not divide into (a^2-3) when a is even. Case 2: Suppose a is odd. By definition, there is $a \in \mathbb{Z}$ such that $a = 2c - 1$. We can see that $4 ((2c-1)^2 - 3) =$
Case 2. Suppose a is odd. By definition, there is $a \in \mathbb{Z}$ such that $a = 2c - 1$. We can see that $4 ((2c - 1) - 3) = 4 (4c^2 - 4c - 2) = 4 2(2c^2 - 2c - 1)$. This shows us that 4 does not divide into $(a^2 - 3)$ when a is odd. Therefore,
we can see that $4 (a^2-3)$ (but it actually doesn't divide).
Comments:

Proposition 1. Let $n \in \mathbb{N}$. If $n \geq 2$, then $\sqrt[n]{2}$ is irrational.

Proof. Let $n \in \mathbb{N}$. Suppose, by contrapositive, that if $\sqrt[n]{2}$ is rational, then n < 2.

Proposition 2. If $a \in \mathbb{Z}$, then $4 \nmid (a^2 - 3)$

Proof. Let $a \in \mathbb{Z}$.

Case 1. a is even.

By definition, $\exists n \in \mathbb{Z}$ such that a = 2n.

Now, $a^2 - 3 = (2n)^2 - 3$.

(1)
$$a^{2} - 3 = (2n)^{2} - 3$$
$$= 4n^{2} - 3$$
$$= 2(2n^{2} - 2) + 1$$

 $2(2n^2 - 2) + 1$ is odd, so therefore $4 \nmid (a^2 - 3)$.

Case 2. a is odd.

By definition, $\exists n \in \mathbb{Z}$ such that a = 2n + 1. Now, $a^2 - 3 = (2n + 1)^2 - 3$.

(2)
$$a^{2} - 3 = (2n+1)^{2} - 3$$
$$= 4n^{2} + 4n + 1 - 3$$
$$= 4n^{2} + 4n - 2$$
$$= 2(2n^{2} + 2n - 1)$$

 $2n^2 + 2n - 1 = 2(n^2 + n - 1) + 1$, which is odd. Hence, we cannot factor another 2 out of $2n^2 + 2n - 1$. Since $2 \nmid (2n^2 + 2n - 1)$, we know that $4 \nmid [2(2n^2 + 2n - 1)]$, which is the same as saying that $4 \nmid (a^2 - 3)$.

In both cases, $4 \nmid (a^2 - 3)$.

\sim			
('0	m	\mathbf{n}	nts:
\mathbf{v}	,,,,,	116	muo.

Proposition 2. If $a \in \mathbb{Z}$, then $4 \nmid (a^2 - 3)$.

Proof. Let $a \in \mathbb{Z}$.

Case 1: a is even.

By definition of even, there exists $c \in \mathbb{Z}$ such that a = 2c.

Then $a^2 - 3 = 2a^2 - 3 \rightarrow 4(a^2 - 1) + 1$. So $a^2 - 3 = 4y + 1$ where $y = a^2 - 1$

By definition of congruence, there exists $a, b \in \mathbb{Z}$ where $a \equiv b \pmod{n}$ if $n \mid (a - b)$.

More precisely n|(a-b) can be put as a=nk+b where $k \in \mathbb{Z}$.

Since $a^2 - 3 = 4y + 1$, we can say $a^2 - 3 \equiv 1 \pmod{4}$.

Thus, $/ a^2 - 3$.

Case 2: a is odd.

By definition of odd, there exists $c \in \mathbb{Z}$ such that a = 2c + 1.

Then $a^2 - 3 = (2c + 1)^2 - 3 \rightarrow 4c^2 + 4c - 2 \rightarrow 4(c^2 + c - 1) + 2$. So $a^2 - 3 = 4(y) + 2$ where $y = c^2 + c - 1$.

By definition of congruence, since $a^2 - 3 = 4y + 2$, we can say $a^2 - 3 \equiv 2 \pmod{4}$

Thus, $4 / (a^2 - 3)$.

Therefore, if $a \in \mathbb{Z}$, then $4 \not\mid (a^2 - 3)$.

Comments:

Proposition 2. If $a \in \mathbb{Z}$, then $4 \nmid (a^2 - 3)$.

Using the negation of the proposition yields: $a \in \mathbb{Z}$ and $4 \mid (a^2 - 3)$

Proof: Let $a \in \mathbb{Z}$ and suppose $4 \mid (a^2 - 3)$. By definition (of divides), there is $m \in \mathbb{Z}$ such that $4m = a^2 - 3$. WLOG, suppose a is even. By definition (of even), there is $k \in \mathbb{Z}$ such that a = 2k.

$$4m = (2k)^{2} - 3$$
$$4(k^{2} - m) = 3$$
$$k^{2} - m = \frac{3}{4}$$

Since $k^2 \in \mathbb{Z}$ and $\frac{3}{4} \in \mathbb{Q}$, then $k^2 - \frac{3}{4} \notin \mathbb{Z}$. This shows that $n \notin \mathbb{Z}$, which is a contradiction because this goes against the assumption that $n \in \mathbb{Z}$. Thus, $4 \nmid (a^2 - 3)$. \square

Comments:		

Proposition 2. If $a \in \mathbb{Z}$, then $4 \nmid (a^2 - 3)$

Proof. Let $a \in \mathbb{Z}$. a can either be even or odd.

Case 1. a is even.

By definition, there exists $n \in \mathbb{Z}$, such that a = 2n.

Then $a^2 - 3 = (2n)^2 - 3 \rightarrow a^2 - 3 = 4n^2 - 3 \rightarrow a^2 - 3 = 4(n^2 - 3/4)$.

Thus $4 \nmid (a^2 - 3)$, because $4 \nmid 3$.

Case 2. a is odd.

By definition, there exists $k \in \mathbb{Z}$, such that a = 2k + 1. Then $a^2 - 3 = (2k + 1)^2 - 3 \rightarrow a^2 - 3 = 4k^2 + 4k - 2 \rightarrow a^2 - 3 = 4(2k^2 + 2k - 1/2)$.

Thus $4 \nmid (a^2 - 3)$, because $4 \nmid -2$.

Therefore in all cases $4 \nmid (a^2 - 3)$.

Definition 1. Let $a, b \in \mathbb{Z}$.

- a) a is **even** if there is $c \in \mathbb{Z}$ such that a = 2c. (This is the same as 2|a).
- b) a is **odd** if there is $c \in \mathbb{Z}$ such that a = 2c + 1.
- c) a divides b, written a|b, if there is $c \in \mathbb{Z}$ such that ac = b. (Also expressed "b is divisible by a").

Proposition 2. If $a \in \mathbb{Z}$, then $4 \nmid (a^2 - 3)$

Proof. Let $a \in \mathbb{Z}$. If $a^2 - 3$ has a remainder when divided by 4, then $4 \nmid (a^2 - 3)$.

Case 3. Suppose a is even. By definition(a) a = 2c where $c \in \mathbb{Z}$.

$$a = 2c$$

$$a^{2} = (2c)^{2}$$

$$a^{2} - 3 = (2c)^{2} - 3$$

$$= 4c^{2} - 3$$

$$(4c^{2} - 3)mod(4) = 1$$

Case 4. Suppose a is odd. By definition(b) a = 2c + 1 where $c \in \mathbb{Z}$.

$$a = c + 1$$

$$a^{2} = (2c + 1)^{2}$$

$$a^{2} - 3 = (2c + 1)^{2} - 3$$

$$= 4c^{2} + 4c + 1 - 3$$

$$4c^{2} + 4c - 2$$

$$(4c^{2} + 4c - 2) mod(4) = 2$$

Thus if a is even and $(4c^2-3)mod(4) \neq 0$ or if a is odd and $(4c^2+4c-2)mod(4) \neq 0$, then $4 \nmid (a^2-3)$ because there is a remainder when divided by 4.

Proposition 2	. 1	$f a \in \mathbb{Z}$,	then 4	1	$(a^2 - 3)^2$	3))
---------------	-----	------------------------	--------	---	---------------	----	---

Proof

Let $a \in \mathbb{Z}$. Suppose $a^2 - 3$ is odd or even.

Case 1:

Let a be an odd integer.

By definition of odds, a = 2m + 1 such that $m \in \mathbb{Z}$

Then $a^2 - 3 = (2m + 1)^2 - 3 = 4m^2 + 4m + 1 - 3 = 4m^2 + 4m + 2$

Thus, $4m^2 - 3$ is not divisible by 4

Case 2:

Let a be an even integer

By definition of even, a = 2m such that $m \in \mathbb{Z}$.

Then $a^2 - 3 = (2m)^2 - 3 = 4m^2 - 3$

Thus 4m-3 is not divisible by 4.

Therefore, 4 is not divisible by $(a^2 - 3)$

Comments:					
0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					

Proposition 2. If $a \in \mathbb{Z}$, then $4 \nmid (a^2 - 3)$

Proof. Let $a \in \mathbb{Z}$ and suppose $4 \mid (a^2-3)$. By definition (of divides) there exists an integer x such that $4x = a^2 - 3$. It follows that $4x = 2(2x) = a^2 - 3$. Thus $a^2 - 3$ must be an even integer since $2 \mid (a^2 - 3)$. Suppose a = 4. Then $a^2 - 3 = 4^2 - 3 = 16 - 3 = 13$. This is a contradiction since 13 is not even. Thus $2 \nmid (a^2 - 3)$ for some integers. Therefore $4 \nmid (a^2 - 3)$.

Comments:

Proposition 2. If $a \in \mathbb{Z}$, then $4 \nmid (a^2 - 3)$

Proof. (By Contradiction) Suppose $(a^3 - 3) \in \mathbb{Z}$ and $4 \mid (a^3 - 3)$

By definition $4m = a^3 - 3$ where $m \in \mathbb{Z}$

Case 1:Let a be even

Hence a=2k where $k \in \mathbb{Z}$

Then, $4m = (2k)^2 - 3 \rightarrow 4m = 4k^2 - 3 \rightarrow m = k^2 - \frac{3}{4}$

By Definition, an $\mathbb{Z} + \mathbb{Z} = \mathbb{Z}$

Since $k^2 \in \mathbb{Z}$ and $\frac{3}{4}$ is not, this is a contradiction of the original statement, which said m has to be an integer.

Case 2: Let a be odd

Hence, a=2k+1 where $k \in \mathbb{Z}$

Then, $4m = (2k+1)^2 - 3 \rightarrow 4m = 4k^2 + 4k - 2 \rightarrow m = k^2 + k - \frac{1}{2}$

By Definition, an $\mathbb{Z} + \mathbb{Z} = \mathbb{Z}$

Since $k^2+k\in\mathbb{Z}$, but $\frac{1}{2}$ is not, this contradicts the previous statement that $m\in\mathbb{Z}$

Therefore, if $a \in \mathbb{Z}$ then, $4 \nmid (a^3 - 3)$

Comments:		

Proposition 2. If $a \in \mathbb{Z}$, then $4 \nmid (a^2 - 3)$

Proof. Suppose $a \in \mathbb{Z}$ and $4|(a^2 - 3)$.

By definition (of divides), there is $c \in \mathbb{Z}$ such that $4c = a^2 - 3$.

Case 1: a is odd. By definition, there is $m \in \mathbb{Z}$ such that a = 2m + 1. Then, $4c = (2m + 1)^2 - 3 = 4m^2 + 4m + 1 - 3 = 4m^2 + 4m - 2 \implies 4c = 2(2m^2 + 2m - 1)$ and $2m^2 + 2m - 1 \in \mathbb{Z}$. Thus, $c \notin \mathbb{Z}$ since 4 does not divide 2.

Case 2: a is even. By definition, there is $n \in \mathbb{Z}$ such that a = 2n. Then, $4c = (2n)^2 - 3 = 4n^2 - 3 = 4n^2 - 4 + 1 \implies 4c = 2(2n^2 - 2) + 1$ and $2n^2 - 2 \in \mathbb{Z}$. Thus, $c \notin \mathbb{Z}$ since 4 does not divide 2 and 4 does not divide 1.

Both cases contradict $4|(a^2-3)$.

Therefore, $4 \nmid (a^2 - 3)$.

Comments:

Notice that lcm(a, b) * gcd(a, b) = a * b.

Since $lcm(a,b) = a$, then $a * gcd(a,b) = a * b$. Thus, $gcd(a,b) = b$ if and only if $b a$.
Therefore, $lcm(a,b) = a$ if and only if $b a$.
Comments:
Droposition 2 For any natural numbers a and has low(a h) if and only if has
Proposition 3. For any natural numbers a and b , $a = lcm(a, b)$ if and only if $b \mid a$.
<i>Proof.</i> Part 1: Let $a, b \in \mathbb{N}$ and suppose $a = lcm(a, b)$. By definition, a is the smallest positive integer where $a a$
and $b a$. Therefore, by definition, $b a$.
Part 2: Let $a, b \in \mathbb{N}$ and suppose $b a$. By definition, there exists a $c \in \mathbb{Z}$ such that $bc = a$. Hence b is less than
or equal to a. Also, numbers always divide themselves, so we know $a a$. Since both b and a divide a, we know a is a common multiple between the two. As the smallest multiple (greater than 0) of any number is itself, a is the
is a common multiple between the two. As the smallest multiple (greater than 0) of any number is itself, a is the smallest multiple of itself. Therefore, $a = lcm(a, b)$.
As it can be shown that if given one condition we can prove the other, $a = lcm(a, b)$ if and only if $b a$.
This it can be shown that it given one condition we can prove the other, $u = term(u, v)$ it and only it $v \mid u$.
Comments:
Comments.

Proposition 3. For any natural numbers a and b, a = lcm(a, b) if and only if $b \mid a$.

Proposition 4. Let C be a circle in \mathbb{R}^2 centered at $(1,1)$. Then either $(2,3) \notin C$ or $(0,2) \notin C$. (Note that C is just the circle itself, not the interior).	3
Proof. Let C be a circle in \mathbb{R}^2 centered at $(1,1)$. Assume $(2,3) \in C$. Then the distance from the center $(1,1)$ is $\sqrt[2]{(2-1)^2 + (3-1)^2} = \sqrt[2]{1+4} = \sqrt[2]{5}$. Now assume $(0,2) \in C$. Then the distance from the center $(1,1)$ is $\sqrt[2]{(0-1)^2 + (2-1)^2} = \sqrt[2]{1+1} = \sqrt[2]{2}$	
Since the radius of C can not have both a radius of $5^{(1/2)}$ and of $2^{(1/2)}$, C can not contain both $(2,3)$ and $(0,2)$. Therefore, either $(2,3) \notin C$ or $(0,2) \notin C$.]
Comments:	