Proposition 1. Let $n \in \mathbb{N}$. If $n \geq 2$, then $\sqrt[n]{2}$ is irrational.
Proof. Let $n \in \mathbb{N}$. Suppose, by contrapositive, that if $\sqrt[n]{2}$ is rational, then $n<2$.
By simplifying, $\sqrt[n]{2}=2^{\frac{1}{n}}$.
Then, by definition, $2^{\frac{1}{n}}$ is rational if $a, b \in \mathbb{Z}$ where $\frac{a}{b}=2^{\frac{1}{n}}$ such that $b \neq 0$.
Observe that $2^{\frac{1}{n}}$ can only be rational when $n<2$ where $n \in \mathbb{N}$. Thus, $n=1$.
When $n=1,2^{\frac{1}{n}}=\frac{a}{b}$ is true.
Therefore, if $n \geq 2$, then $\sqrt[n]{2}$ is irrational.

Comments:

Proposition 2. If $a \in \mathbb{Z}$, then $4 \nmid\left(a^{2}-3\right)$.
Proof. Let $a \in \mathbb{Z}$.
Case 1: Suppose a is even. By definition, there is $a \in \mathbb{Z}$ such that $a=2 c$. We can see that $4 \mid\left((2 c)^{2}-3\right)=$ $4 \mid\left(4 c^{2}-3\right)$. This shows us that 4 does not divide into $\left(a^{2}-3\right)$ when a is even.

Case 2: Suppose a is odd. By definition, there is $a \in \mathbb{Z}$ such that $a=2 c-1$. We can see that $4 \mid\left((2 c-1)^{2}-3\right)=$ $4\left|\left(4 c^{2}-4 c-2\right)=4\right| 2\left(2 c^{2}-2 c-1\right)$. This shows us that 4 does not divide into $\left(a^{2}-3\right)$ when a is odd. Therefore, we can see that $4 \mid\left(a^{2}-3\right)$ (but it actually doesn't divide).

Comments:

Proposition 2. If $a \in \mathbb{Z}$, then $4 \nmid\left(a^{2}-3\right)$
Proof. Let $a \in \mathbb{Z}$.
Case 1. a is even.
By definition, $\exists n \in \mathbb{Z}$ such that $a=2 n$.
Now, $a^{2}-3=(2 n)^{2}-3$.
(1)

$$
\begin{aligned}
a^{2}-3 & =(2 n)^{2}-3 \\
& =4 n^{2}-3 \\
& =2\left(2 n^{2}-2\right)+1
\end{aligned}
$$

$2\left(2 n^{2}-2\right)+1$ is odd, so therefore $4 \nmid\left(a^{2}-3\right)$.

Case 2. a is odd.
By definition, $\exists n \in \mathbb{Z}$ such that $a=2 n+1$. Now, $a^{2}-3=(2 n+1)^{2}-3$.

$$
\begin{align*}
a^{2}-3 & =(2 n+1)^{2}-3 \\
& =4 n^{2}+4 n+1-3 \\
& =4 n^{2}+4 n-2 \tag{2}\\
& =2\left(2 n^{2}+2 n-1\right)
\end{align*}
$$

$2 n^{2}+2 n-1=2\left(n^{2}+n-1\right)+1$, which is odd. Hence, we cannot factor another 2 out of $2 n^{2}+2 n-1$.
Since $2 \nmid\left(2 n^{2}+2 n-1\right)$, we know that $4 \nmid\left[2\left(2 n^{2}+2 n-1\right)\right]$, which is the same as saying that $4 \nmid\left(a^{2}-3\right)$.
In both cases, $4 \nmid\left(a^{2}-3\right)$.

Comments:

Proposition 2. If $a \in \mathbb{Z}$, then $4 \nmid\left(a^{2}-3\right)$.
Proof. Let $a \in \mathbb{Z}$.
Case 1: a is even.
By definition of even, there exists $c \in \mathbb{Z}$ such that $a=2 c$.
Then $a^{2}-3=2 a^{2}-3 \rightarrow 4\left(a^{2}-1\right)+1$.
So $a^{2}-3=4 y+1$ where $y=a^{2}-1$
By definition of congruence, there exists $a, b \in \mathbb{Z}$ where $a \equiv b(\operatorname{modn})$ if $n \mid(a-b)$.
More precisely $n \mid(a-b)$ can be put as $a=n k+b$ where $k \in \mathbb{Z}$.
Since $a^{2}-3=4 y+1$, we can say $a^{2}-3 \equiv 1(\bmod 4)$.
Thus, $\not \backslash a^{2}-3$.
Case 2: a is odd.
By definition of odd, there exists $c \in \mathbb{Z}$ such that $a=2 c+1$.
Then $a^{2}-3=(2 c+1)^{2}-3 \rightarrow 4 c^{2}+4 c-2 \rightarrow 4\left(c^{2}+c-1\right)+2$.
So $a^{2}-3=4(y)+2$ where $y=c^{2}+c-1$.
By definition of congruence, since $a^{2}-3=4 y+2$, we can say $a^{2}-3 \equiv 2(\bmod 4)$
Thus, $4 \times\left(a^{2}-3\right)$.
Therefore, if $a \in \mathbb{Z}$, then $4 \backslash\left(a^{2}-3\right)$.

Comments:

Proposition 2. If $a \in \mathbb{Z}$, then $4 \nmid\left(a^{2}-3\right)$.
Using the negation of the proposition yields: $a \in \mathbb{Z}$ and $4 \mid\left(a^{2}-3\right)$
Proof: Let $a \in \mathbb{Z}$ and suppose $4 \mid\left(a^{2}-3\right)$. By definition (of divides), there is $m \in \mathbb{Z}$ such that $4 m=a^{2}-3$. WLOG, suppose a is even. By definition (of even), there is $k \in \mathbb{Z}$ such that $a=2 k$.

$$
\begin{array}{r}
4 m=(2 k)^{2}-3 \\
4\left(k^{2}-m\right)=3 \\
k^{2}-m=\frac{3}{4}
\end{array}
$$

Since $k^{2} \in \mathbb{Z}$ and $\frac{3}{4} \in \mathbb{Q}$, then $k^{2}-\frac{3}{4} \notin \mathbb{Z}$. This shows that $n \notin \mathbb{Z}$, which is a contradiction because this goes against the assumption that $n \in \mathbb{Z}$. Thus, $4 \nmid\left(a^{2}-3\right)$.

Comments:

Proposition 2. If $a \in \mathbb{Z}$, then $4 \nmid\left(a^{2}-3\right)$
Proof. Let $a \in \mathbb{Z} . a$ can either be even or odd.
Case 1. a is even.
By definition, there exists $n \in \mathbb{Z}$, such that $a=2 n$.
Then $a^{2}-3=(2 n)^{2}-3 \rightarrow a^{2}-3=4 n^{2}-3 \rightarrow a^{2}-3=4\left(n^{2}-3 / 4\right)$.
Thus $4 \nmid\left(a^{2}-3\right)$, because $4 \nmid 3$.
Case 2. a is odd.
By definition, there exists $k \in \mathbb{Z}$, such that $a=2 k+1$.
Then $a^{2}-3=(2 k+1)^{2}-3 \rightarrow a^{2}-3=4 k^{2}+4 k-2 \rightarrow a^{2}-3=4\left(2 k^{2}+2 k-1 / 2\right)$.
Thus $4 \nmid\left(a^{2}-3\right)$, because $4 \nmid-2$.
Therefore in all cases $4 \nmid\left(a^{2}-3\right)$.

Comments:

Definition 1. Let $a, b \in \mathbb{Z}$.
a) a is even if there is $c \in \mathbb{Z}$ such that $a=2 c$. (This is the same as $2 \mid a)$.
b) a is odd if there is $c \in \mathbb{Z}$ such that $a=2 c+1$.
c) a divides b, written $a \mid b$, if there is $c \in \mathbb{Z}$ such that $a c=b$. (Also expressed " b is divisible by a ").

Proposition 2. If $a \in \mathbb{Z}$, then $4 \nmid\left(a^{2}-3\right)$
Proof. Let $a \in \mathbb{Z}$. If $a^{2}-3$ has a remainder when divided by 4 , then $4 \nmid\left(a^{2}-3\right)$.
Case 3. Suppose a is even. By definition(a) $a=2 c$ where $c \in \mathbb{Z}$.

$$
\begin{array}{r}
a=2 c \\
a^{2}=(2 c)^{2} \\
a^{2}-3=(2 c)^{2}-3 \\
=4 c^{2}-3 \\
\left(4 c^{2}-3\right) \bmod (4)=1
\end{array}
$$

Case 4. Suppose a is odd. By definition(b) $a=2 c+1$ where $c \in \mathbb{Z}$.

$$
\begin{array}{r}
a=c+1 \\
a^{2}=(2 c+1)^{2} \\
a^{2}-3=(2 c+1)^{2}-3 \\
=4 c^{2}+4 c+1-3 \\
4 c^{2}+4 c-2 \\
\left(4 c^{2}+4 c-2\right) \bmod (4)=2
\end{array}
$$

Thus if a is even and $\left(4 c^{2}-3\right) \bmod (4) \neq 0$ or if a is odd and $\left(4 c^{2}+4 c-2\right) \bmod (4) \neq 0$, then $4 \nmid\left(a^{2}-3\right)$ because there is a remainder when divided by 4 .

Comments:

Proposition 2. If $a \in \mathbb{Z}$, then $4 \nmid\left(a^{2}-3\right)$
Proof:
Let a $\in \mathbb{Z}$. Suppose $a^{2}-3$ is odd or even.

Case 1:

Let a be an odd integer.
By definition of odds, $a=2 m+1$ such that $\mathrm{m} \in \mathbb{Z}$
Then $a^{2}-3=(2 m+1)^{2}-3=4 m^{2}+4 m+1-3=4 m^{2}+4 m+2$
Thus, $4 m^{2}-3$ is not divisible by 4
Case 2:
Let a be an even integer
By definition of even, $a=2 m$ such that $\mathrm{m} \in \mathbb{Z}$.
Then $a^{2}-3=(2 m)^{2}-3=4 m^{2}-3$
Thus $4 m-3$ is not divisible by 4 .
Therefore, 4 is not divisible by $\left(a^{2}-3\right)$

Comments:

Proposition 2. If $a \in \mathbb{Z}$, then $4 \nmid\left(a^{2}-3\right)$
Proof. Let $a \in \mathbb{Z}$ and suppose $4 \mid\left(a^{2}-3\right)$. By definition (of divides) there exists an integer x such that $4 x=a^{2}-3$. It follows that $4 x=2(2 x)=a^{2}-3$. Thus $a^{2}-3$ must be an even integer since $2 \mid\left(a^{2}-3\right)$. Suppose $a=4$. Then $a^{2}-3=4^{2}-3=16-3=13$. This is a contradiction since 13 is not even. Thus $2 \nmid\left(a^{2}-3\right)$ for some integers. Therefore $4 \nmid\left(a^{2}-3\right)$.

Comments:

Proposition 2. If $a \in \mathbb{Z}$, then $4 \nmid\left(a^{2}-3\right)$
Proof. (By Contradiction) Suppose $\left(a^{3}-3\right) \in \mathbb{Z}$ and $4 \mid\left(a^{3}-3\right)$
By definition $4 m=a^{3}-3$ where $m \in \mathbb{Z}$
Case 1:Let a be even
Hence $\mathrm{a}=2 \mathrm{k}$ where $k \in \mathbb{Z}$
Then, $4 m=(2 k)^{2}-3 \rightarrow 4 m=4 k^{2}-3 \rightarrow m=k^{2}-\frac{3}{4}$
By Definition, an $\mathbb{Z}+\mathbb{Z}=\mathbb{Z}$
Since $k^{2} \in \mathbb{Z}$ and $\frac{3}{4}$ is not, this is a contradiction of the original statement, which said m has to be an integer.
Case 2: Let a be odd
Hence, $\mathrm{a}=2 \mathrm{k}+1$ where $k \in \mathbb{Z}$
Then, $4 m=(2 k+1)^{2}-3 \rightarrow 4 m=4 k^{2}+4 k-2 \rightarrow m=k^{2}+k-\frac{1}{2}$
By Definition, an $\mathbb{Z}+\mathbb{Z}=\mathbb{Z}$
Since $k^{2}+k \in \mathbb{Z}$, but $\frac{1}{2}$ is not, this contradicts the previous statement that $m \in \mathbb{Z}$
Therefore, if $a \in \mathbb{Z}$ then, $4 \nmid\left(a^{3}-3\right)$

Comments:

Proposition 2. If $a \in \mathbb{Z}$, then $4 \nmid\left(a^{2}-3\right)$
Proof. Suppose $a \in \mathbb{Z}$ and $4 \mid\left(a^{2}-3\right)$.
By definition (of divides), there is $c \in \mathbb{Z}$ such that $4 c=a^{2}-3$.
Case 1: a is odd. By definition, there is $m \in \mathbb{Z}$ such that $a=2 m+1$. Then, $4 c=(2 m+1)^{2}-3=$ $4 m^{2}+4 m+1-3=4 m^{2}+4 m-2 \Longrightarrow 4 c=2\left(2 m^{2}+2 m-1\right)$ and $2 m^{2}+2 m-1 \in \mathbb{Z}$. Thus, $c \notin \mathbb{Z}$ since 4 does not divide 2 .

Case 2: a is even. By definition, there is $n \in \mathbb{Z}$ such that $a=2 n$. Then, $4 c=(2 n)^{2}-3=4 n^{2}-3=$ $4 n^{2}-4+1 \Longrightarrow 4 c=2\left(2 n^{2}-2\right)+1$ and $2 n^{2}-2 \in \mathbb{Z}$. Thus, $c \notin \mathbb{Z}$ since 4 does not divide 2 and 4 does not divide 1.

Both cases contradict $4 \mid\left(a^{2}-3\right)$.
Therefore, $4 \nmid\left(a^{2}-3\right)$.

Comments:

Proposition 3. For any natural numbers a and $b, a=l c m(a, b)$ if and only if $b \mid a$.
Notice that $l c m(a, b) * \operatorname{gcd}(a, b)=a * b$.
Since $\operatorname{lcm}(a, b)=a$, then $a * \operatorname{gcd}(a, b)=a * b$.
Thus, $\operatorname{gcd}(a, b)=b$ if and only if $b \mid a$.
Therefore, $\operatorname{lcm}(a, b)=a$ if and only if $b \mid a$.

Comments:

Proposition 3. For any natural numbers a and $b, a=l c m(a, b)$ if and only if $b \mid a$.
Proof. Part 1: Let $a, b \in \mathbb{N}$ and suppose $a=\operatorname{lcm}(a, b)$. By definition, a is the smallest positive integer where $a \mid a$ and $b \mid a$. Therefore, by definition, $b \mid a$.

Part 2: Let $a, b \in \mathbb{N}$ and suppose $b \mid a$. By definition, there exists a $c \in \mathbb{Z}$ such that $b c=a$. Hence b is less than or equal to a. Also, numbers always divide themselves, so we know $a \mid a$. Since both b and a divide a, we know a is a common multiple between the two. As the smallest multiple (greater than 0) of any number is itself, a is the smallest multiple of itself. Therefore, $a=l c m(a, b)$.

As it can be shown that if given one condition we can prove the other, $a=l c m(a, b)$ if and only if $b \mid a$.

Comments:

Proposition 4. Let C be a circle in \mathbb{R}^{2} centered at $(1,1)$. Then either $(2,3) \notin C$ or $(0,2) \notin C$. (Note that C is just the circle itself, not the interior).

Proof. Let C be a circle in \mathbb{R}^{2} centered at $(1,1)$.
Assume $(2,3) \in C$. Then the distance from the center $(1,1)$ is $\sqrt[2]{(2-1)^{2}+(3-1)^{2}}=\sqrt[2]{1+4}=\sqrt[2]{5}$.
Now assume $(0,2) \in C$. Then the distance from the center $(1,1)$ is $\sqrt[2]{(0-1)^{2}+(2-1)^{2}}=\sqrt[2]{1+1}=\sqrt[2]{2}$
Since the radius of C can not have both a radius of $5(1 / 2)$ and of $2(1 / 2), C$ can not contain both $(2,3)$ and $(0,2)$. Therefore, either $(2,3) \notin C$ or $(0,2) \notin C$.

Comments:

