Proposition 1. Let n € N. If n > 2, then /2 is irrational.

Proof. Let n € N. Suppose, by contrapositive, that if ¥/2 is rational, then n < 2.
By simplifying, V2 = 2.

Then, by definition, 9% is rational if a,b € Z where 7 = 2% such that b #0.
Observe that 27 can only be rational when n < 2 where n € N. Thus, n = 1.
When n =1, 2 = 7 is true.

Therefore, if n > 2, then /2 is irrational.

Comments:

Proposition 2. If a € Z, then 41 (a® — 3).

Proof. Let a € Z.

Case 1: Suppose a is even. By definition, there is a € Z such that a = 2c. We can see that 4|((2c)? — 3) =
4/(4c® — 3). This shows us that 4 does not divide into (a? — 3) when a is even.

Case 2: Suppose a is odd. By definition, there is a € Z such that a = 2c — 1. We can see that 4/((2c —1)? —3) =
4](4c® — 4c — 2) = 4|2(2¢* — 2¢ — 1). This shows us that 4 does not divide into (a? — 3) when a is odd. Therefore,
we can see that 4|(a? — 3) (but it actually doesn’t divide).

Comments:
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Proposition 2. If a € Z, then 41 (a® — 3)
Proof. Let a € Z.

Case 1. a is even.
By definition, In € Z such that a = 2n.
Now, a? — 3 = (2n)? — 3.

a®—3=(2n)> -3
(1) =4n? -3
=2(2n% - 2)+1
2(2n% — 2) + 1 is odd, so therefore 4 { (a® — 3).

Case 2. a is odd.
By definition, In € Z such that a = 2n + 1. Now, a®> —3 = (2n + 1) — 3.

a*—3=2n+1)>-3
=4n’+4n+1-3
=4n® +4n —2
=2(2n? +2n—1)

2n% +2n — 1 =2(n? + n — 1) + 1, which is odd. Hence, we cannot factor another 2 out of 2n? + 2n — 1.
Since 21 (2n% + 2n — 1), we know that 4 1 [2(2n? + 2n — 1)], which is the same as saying that 41 (a®> —3). O

In both cases, 4 { (a® — 3). O

(2)

Comments:




Proposition 2. If a € Z, then 41 (a® — 3).

Proof. Let a € Z.
Case 1: a is even.
By definition of even, there exists ¢ € Z such that a = 2c.
Then a? — 3 =2a% —3 — 4(a®> — 1) + 1.
Soa? -3 =4y +1 where y =a® — 1

By definition of congruence, there exists a,b € Z where a = b(modn) if n|(a — b).
More precisely n|(a — b) can be put as a = nk + b where k € Z.

Since a? — 3 = 4y + 1, we can say a® — 3 = 1(mod4).

Thus, }a? — 3.

Case 2: a is odd.

By definition of odd, there exists ¢ € Z such that a = 2¢ + 1.
Then a? —3=(2c+1)2 -3 w4 +4c—2 = 4(P +c—1)+2.
So a? — 3 = 4(y) + 2 where y = ¢ + ¢ — 1.

By definition of congruence, since a? — 3 = 4y + 2, we can say a’® — 3 = 2(mod4)
Thus, 4 [ (a® — 3).
Therefore, if a € Z, then 4 [ (a® — 3).

Comments:
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Proposition 2. If a € Z, then 41 (a® — 3).

Using the negation of the proposition yields: a € Z and 4 | (a® — 3)
Proof: Let a € Z and suppose 4 | (a? — 3). By definition (of divides), there is m € Z such that 4m = a® — 3.
WLOG, suppose a is even. By definition (of even), there is k € Z such that a = 2k.

4m = (2k)* — 3
4(k* —m) =3
3

2 _ 2

k m 1

Since k% € Z and % € Q, then k% — % ¢ Z. This shows that n ¢ Z, which is a contradiction because this goes
against the assumption that n € Z. Thus, 41 (a® — 3). O

Comments:

Proposition 2. If a€Z, then 41 (a® — 3)
Proof. Let a€Z. a can either be even or odd.

Case 1. a is even.
By definition, there exists n€Z, such that a = 2n.
Then a? —3 = (2n)? -3 = a®> =3 =4n?> —3 — a® — 3 = 4(n? - 3/4).
Thus 4 1 (a? — 3), because 4 1 3.

Case 2. a is odd.
By definition, there exists k€Z, such that a = 2k + 1.
Then a®? —3 = (2k+1)2 -3 — a®> —3 =4k%> + 4k — 2 — a® — 3 = 4(2k* + 2k — 1/2).
Thus 4 1 (e — 3), because 4 { —2.

Therefore in all cases 4 1 (a® — 3). O

Comments:




Definition 1. Let a,b € Z.

a) a is even if there is ¢ € Z such that a = 2¢. (This is the same as 2|a).
b) a is odd if there is ¢ € Z such that a = 2¢ + 1.
¢) a divides b, written alb, if there is ¢ € Z such that ac = b. (Also expressed “b is divisible by a”).

Proposition 2. If a€Z, then 41 (a® — 3)
Proof. Let a € Z. If a> — 3 has a remainder when divided by 4, then 4 { (a? — 3).
Case 3. Suppose a is even. By definition(a) a = 2¢ where ¢ € Z.
a=2c
a® = (2¢)?
a? —3=(2c)%*-3
=42 -3
(4c* — 3)mod(4) = 1
Case 4. Suppose a is odd. By definition(b) a = 2¢ + 1 where ¢ € Z.
a=c+1
a? = (2¢ +1)?
a>—3=(2c+1)?2-3
=4c* +4c+1-3
4¢® +4c—2
(4¢* + 4c — 2)mod(4) = 2

Thus if a is even and (4c? — 3)mod(4) # 0 or if a is odd and (4c? + 4c — 2)mod(4) # 0, then 4 1 (a? — 3) because
there is a remainder when divided by 4. O

Comments:
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Proposition 2. If a€Z, then 41 (a® — 3)

Proof:
Let a € Z. Suppose a® — 3 is odd or even.

Case 1:

Let a be an odd integer.

By definition of odds, a = 2m + 1 such that m € Z

Then a®? —3 = (2m+1)2 =3 =4m?> +4m +1 -3 = 4m? + 4m + 2
Thus, 4m? — 3 is not divisible by 4

Case 2:

Let a be an even integer

By definition of even, a = 2m such that m € Z.
Then a? —3 = (2m)? —3 =4m? — 3

Thus 4m — 3 is not divisible by 4.

Therefore, 4 is not divisible by (a? — 3)

Comments:

Proposition 2. If a€Z, then 41 (a® — 3)

Proof. Let a € Z and suppose 4 | (a® —3). By definition (of divides) there exists an integer x such that 4x = a? — 3.
It follows that 4z = 2(27) = a? — 3. Thus a? — 3 must be an even integer since 2 | (a®> — 3). Suppose a = 4. Then
a? —3 =14% -3 =16 — 3 = 13. This is a contradiction since 13 is not even. Thus 2 { (a? — 3) for some integers.
Therefore 4 { (a? — 3). O

Comments:




Proposition 2. If a€Z, then 41 (a® — 3)

Proof. (By Contradiction) Suppose (a® —3) € Z and 4 | (a® — 3)
By definition 4m = a® — 3 where m € Z
Case 1:Let a be even
Hence a=2k where k € Z
Then, 4m = (2k)? —3 > dm =4k* -3 - m =k* -3
By Definition, an Z+Z = Z
Since k? € Z and % is not, this is a contradiction of the original statement, which said m has to be an integer.
Case 2: Let a be odd
Hence, a=2k+1 where k € Z
Then, 4m = (2k+1)> =3 5 dm =4k + 4k —2 > m=k*+k — 3
By Definition, an Z +Z = Z
Since k* + k € Z ,but % is not, this contradicts the previous statement that m € Z
Therefore, if a € Z then, 4 1 (a® — 3)

Comments:

Proposition 2. If a€Z, then 41 (a® — 3)

Proof. Suppose a € Z and 4|(a? — 3).

By definition (of divides), there is ¢ € Z such that 4c = a® — 3.

Case 1: a is odd. By definition, there is m € Z such that a = 2m + 1. Then, 4¢c = 2m + 1)? — 3 =
Am2 4+ 4m+1—-3=4m? +4m —2 = 4c=2(2m? +2m — 1) and 2m? +2m — 1 € Z. Thus, ¢ ¢ Z since 4 does
not divide 2.

Case 2: a is even. By definition, there is n € Z such that a = 2n. Then, 4c = (2n)? — 3 = 4n? — 3 =
4n? —4+1 = 4c=2(2n?>—-2)+1 and 2n%? — 2 € Z. Thus, ¢ ¢ Z since 4 does not divide 2 and 4 does not divide
1.

Both cases contradict 4/(a? — 3).

Therefore, 41 (a® — 3).

Comments:




8

Proposition 3. For any natural numbers a and b, a = lem(a,b) if and only if b | a.

Notice that lem(a, b) * ged(a,b) = a * b.
Since lem(a,b) = a, then a * ged(a,b) = a * b.
Thus, gcd(a,b) = b if and only if b|a.
Therefore, lem(a,b) = a if and only if b|a.

Comments:

Proposition 3. For any natural numbers a and b, a = lem(a,b) if and only if b | a.

Proof. Part 1: Let a,b € N and suppose a = lem(a,b). By definition, a is the smallest positive integer where ala
and b|a. Therefore, by definition, b|a.

Part 2: Let a,b € N and suppose b|a. By definition, there exists a ¢ € Z such that bc = a. Hence b is less than
or equal to a. Also, numbers always divide themselves, so we know ala. Since both b and a divide a, we know a
is a common multiple between the two. As the smallest multiple (greater than 0) of any number is itself, a is the
smallest multiple of itself. Therefore, a = lem(a,b).

As it can be shown that if given one condition we can prove the other, a = lem(a,b) if and only if b|a.

O

Comments:
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Proposition 4. Let C be a circle in R? centered at (1,1). Then either (2,3) ¢ C or (0,2) ¢ C. (Note that C is
Just the circle itself, not the interior).

Proof. Let C be a circle in R? centered at (1,1).
Assume (2,3) € C. Then the distance from the center (1,1)is /(2—1)2+ (3 —-1)2 = ¢/1+4 = V/5.
Now assume (0,2) € C. Then the distance from the center (1,1)is /(0 —1)2+(2-1)2=¢1+1= /2
Since the radius of C' can not have both a radius of 5(1/2) and of 2(1/2), C' can not contain both (2,3) and
(0,2). Therefore, either (2,3) ¢ C or (0,2) ¢ C. O

Comments:




