
Proposition 1. Let n ∈ N. If n ≥ 2, then
n
√

2 is irrational.

Proof. Let n ∈ N. Suppose, by contrapositive, that if
n
√

2 is rational, then n < 2.

By simplifying,
n
√

2 = 2
1
n .

Then, by definition, 2
1
n is rational if a, b ∈ Z where a

b = 2
1
n such that b 6= 0.

Observe that 2
1
n can only be rational when n < 2 where n ∈ N. Thus, n = 1.

When n = 1, 2
1
n = a

b is true.

Therefore, if n ≥ 2, then
n
√

2 is irrational.

Comments:

Proposition 2. If a ∈ Z, then 4 - (a2 − 3).

Proof. Let a ∈ Z.
Case 1: Suppose a is even. By definition, there is a ∈ Z such that a = 2c. We can see that 4|((2c)2 − 3) =

4|(4c2 − 3). This shows us that 4 does not divide into (a2 − 3) when a is even.
Case 2: Suppose a is odd. By definition, there is a ∈ Z such that a = 2c−1. We can see that 4|((2c−1)2−3) =

4|(4c2 − 4c− 2) = 4|2(2c2 − 2c− 1). This shows us that 4 does not divide into (a2 − 3) when a is odd. Therefore,
we can see that 4|(a2 − 3) (but it actually doesn’t divide).

Comments:

1
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Proposition 2. If a ∈ Z, then 4 - (a2 − 3)

Proof. Let a ∈ Z.

Case 1. a is even.
By definition, ∃n ∈ Z such that a = 2n.
Now, a2 − 3 = (2n)2 − 3.

a2 − 3 = (2n)2 − 3

= 4n2 − 3

= 2(2n2 − 2) + 1

(1)

2(2n2 − 2) + 1 is odd, so therefore 4 - (a2 − 3).
�

Case 2. a is odd.
By definition, ∃n ∈ Z such that a = 2n + 1. Now, a2 − 3 = (2n + 1)2 − 3.

a2 − 3 = (2n + 1)2 − 3

= 4n2 + 4n + 1− 3

= 4n2 + 4n− 2

= 2(2n2 + 2n− 1)

(2)

2n2 + 2n− 1 = 2(n2 + n− 1) + 1, which is odd. Hence, we cannot factor another 2 out of 2n2 + 2n− 1.
Since 2 - (2n2 + 2n− 1), we know that 4 - [2(2n2 + 2n− 1)], which is the same as saying that 4 - (a2 − 3). �

In both cases, 4 - (a2 − 3). �

Comments:
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Proposition 2. If a ∈ Z, then 4 - (a2 − 3).

Proof. Let a ∈ Z.
Case 1: a is even.
By definition of even, there exists c ∈ Z such that a = 2c.
Then a2 − 3 = 2a2 − 3→ 4(a2 − 1) + 1.
So a2 − 3 = 4y + 1 where y = a2 − 1

By definition of congruence, there exists a, b ∈ Z where a ≡ b(modn) if n|(a− b).
More precisely n|(a− b) can be put as a = nk + b where k ∈ Z.
Since a2 − 3 = 4y + 1, we can say a2 − 3 ≡ 1(mod4).
Thus, 6 | a2 − 3.

Case 2: a is odd.
By definition of odd, there exists c ∈ Z such that a = 2c + 1.
Then a2 − 3 = (2c + 1)2 − 3→ 4c2 + 4c− 2→ 4(c2 + c− 1) + 2.
So a2 − 3 = 4(y) + 2 where y = c2 + c− 1.

By definition of congruence, since a2 − 3 = 4y + 2, we can say a2 − 3 ≡ 2(mod4)
Thus, 4 6 | (a2 − 3).
Therefore, if a ∈ Z, then 4 6 | (a2 − 3).

�

Comments:
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Proposition 2. If a ∈ Z, then 4 - (a2 − 3).

Using the negation of the proposition yields: a ∈ Z and 4 | (a2 − 3)
Proof: Let a ∈ Z and suppose 4 | (a2 − 3). By definition (of divides), there is m ∈ Z such that 4m = a2 − 3.

WLOG, suppose a is even. By definition (of even), there is k ∈ Z such that a = 2k.

4m = (2k)2 − 3

4(k2 −m) = 3

k2 −m =
3

4

Since k2 ∈ Z and 3
4 ∈ Q, then k2 − 3

4 /∈ Z. This shows that n /∈ Z, which is a contradiction because this goes

against the assumption that n ∈ Z. Thus, 4 - (a2 − 3). �
Comments:

Proposition 2. If a∈Z, then 4 - (a2 − 3)

Proof. Let a∈Z. a can either be even or odd.

Case 1. a is even.
By definition, there exists n∈Z, such that a = 2n.
Then a2 − 3 = (2n)2 − 3→ a2 − 3 = 4n2 − 3→ a2 − 3 = 4(n2 − 3/4).
Thus 4 - (a2 − 3), because 4 - 3.

Case 2. a is odd.
By definition, there exists k∈Z, such that a = 2k + 1.
Then a2 − 3 = (2k + 1)2 − 3→ a2 − 3 = 4k2 + 4k − 2→ a2 − 3 = 4(2k2 + 2k − 1/2).
Thus 4 - (a2 − 3), because 4 - −2.

Therefore in all cases 4 - (a2 − 3). �

Comments:
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Definition 1. Let a, b ∈ Z.

a) a is even if there is c ∈ Z such that a = 2c. (This is the same as 2|a).
b) a is odd if there is c ∈ Z such that a = 2c + 1.
c) a divides b, written a|b, if there is c ∈ Z such that ac = b. (Also expressed “b is divisible by a”).

Proposition 2. If a∈Z, then 4 - (a2 − 3)

Proof. Let a ∈ Z. If a2 − 3 has a remainder when divided by 4, then 4 - (a2 − 3).

Case 3. Suppose a is even. By definition(a) a = 2c where c ∈ Z.

a = 2c

a2 = (2c)2

a2 − 3 = (2c)2 − 3

= 4c2 − 3

(4c2 − 3)mod(4) = 1

Case 4. Suppose a is odd. By definition(b) a = 2c + 1 where c ∈ Z.

a = c + 1

a2 = (2c + 1)2

a2 − 3 = (2c + 1)2 − 3

= 4c2 + 4c + 1− 3

4c2 + 4c− 2

(4c2 + 4c− 2)mod(4) = 2

Thus if a is even and (4c2− 3)mod(4) 6= 0 or if a is odd and (4c2 + 4c− 2)mod(4) 6= 0, then 4 - (a2− 3) because
there is a remainder when divided by 4. �

Comments:
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Proposition 2. If a∈Z, then 4 - (a2 − 3)

Proof:
Let a ∈ Z. Suppose a2 − 3 is odd or even.

Case 1:
Let a be an odd integer.
By definition of odds, a = 2m + 1 such that m ∈ Z
Then a2 − 3 = (2m + 1)2 − 3 = 4m2 + 4m + 1− 3 = 4m2 + 4m + 2
Thus, 4m2 − 3 is not divisible by 4

Case 2:
Let a be an even integer
By definition of even, a = 2m such that m ∈ Z.
Then a2 − 3 = (2m)2 − 3 = 4m2 − 3
Thus 4m− 3 is not divisible by 4.

Therefore, 4 is not divisible by (a2 − 3)

Comments:

Proposition 2. If a∈Z, then 4 - (a2 − 3)

Proof. Let a ∈ Z and suppose 4 | (a2−3). By definition (of divides) there exists an integer x such that 4x = a2−3.
It follows that 4x = 2(2x) = a2 − 3. Thus a2 − 3 must be an even integer since 2 | (a2 − 3). Suppose a = 4. Then
a2 − 3 = 42 − 3 = 16 − 3 = 13. This is a contradiction since 13 is not even. Thus 2 - (a2 − 3) for some integers.
Therefore 4 - (a2 − 3). �

Comments:
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Proposition 2. If a∈Z, then 4 - (a2 − 3)

Proof. (By Contradiction) Suppose (a3 − 3) ∈ Z and 4 | (a3 − 3)
By definition 4m = a3 − 3 where m ∈ Z
Case 1:Let a be even
Hence a=2k where k ∈ Z
Then, 4m = (2k)2 − 3→ 4m = 4k2 − 3→ m = k2 − 3

4
By Definition, an Z + Z = Z
Since k2 ∈ Z and 3

4 is not, this is a contradiction of the original statement, which said m has to be an integer.
Case 2: Let a be odd
Hence, a=2k+1 where k ∈ Z
Then, 4m = (2k + 1)2 − 3→ 4m = 4k2 + 4k − 2→ m = k2 + k − 1

2
By Definition, an Z + Z = Z
Since k2 + k ∈ Z ,but 1

2 is not, this contradicts the previous statement that m ∈ Z
Therefore, if a ∈ Z then, 4 - (a3 − 3)

�

Comments:

Proposition 2. If a∈Z, then 4 - (a2 − 3)

Proof. Suppose a ∈ Z and 4|(a2 − 3).
By definition (of divides), there is c ∈ Z such that 4c = a2 − 3.
Case 1: a is odd. By definition, there is m ∈ Z such that a = 2m + 1. Then, 4c = (2m + 1)2 − 3 =

4m2 + 4m + 1− 3 = 4m2 + 4m− 2 =⇒ 4c = 2(2m2 + 2m− 1) and 2m2 + 2m− 1 ∈ Z. Thus, c /∈ Z since 4 does
not divide 2.

Case 2: a is even. By definition, there is n ∈ Z such that a = 2n. Then, 4c = (2n)2 − 3 = 4n2 − 3 =
4n2− 4 + 1 =⇒ 4c = 2(2n2− 2) + 1 and 2n2− 2 ∈ Z. Thus, c /∈ Z since 4 does not divide 2 and 4 does not divide
1.

Both cases contradict 4|(a2 − 3).
Therefore, 4 - (a2 − 3).

�

Comments:
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Proposition 3. For any natural numbers a and b, a = lcm(a, b) if and only if b | a.

Notice that lcm(a, b) ∗ gcd(a, b) = a ∗ b.
Since lcm(a, b) = a, then a ∗ gcd(a, b) = a ∗ b.
Thus, gcd(a, b) = b if and only if b|a.
Therefore, lcm(a, b) = a if and only if b|a.

Comments:

Proposition 3. For any natural numbers a and b, a = lcm(a, b) if and only if b | a.

Proof. Part 1: Let a, b ∈ N and suppose a = lcm(a, b). By definition, a is the smallest positive integer where a|a
and b|a. Therefore, by definition, b|a.

Part 2: Let a, b ∈ N and suppose b|a. By definition, there exists a c ∈ Z such that bc = a. Hence b is less than
or equal to a. Also, numbers always divide themselves, so we know a|a. Since both b and a divide a, we know a
is a common multiple between the two. As the smallest multiple (greater than 0) of any number is itself, a is the
smallest multiple of itself. Therefore, a = lcm(a, b).

As it can be shown that if given one condition we can prove the other, a = lcm(a, b) if and only if b|a.
�

Comments:
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Proposition 4. Let C be a circle in R2 centered at (1, 1). Then either (2, 3) /∈ C or (0, 2) /∈ C. (Note that C is
just the circle itself, not the interior).

Proof. Let C be a circle in R2 centered at (1, 1).

Assume (2, 3) ∈ C. Then the distance from the center (1, 1) is 2
√

(2− 1)2 + (3− 1)2 = 2
√

1 + 4 = 2
√

5.

Now assume (0, 2) ∈ C. Then the distance from the center (1, 1) is 2
√

(0− 1)2 + (2− 1)2 = 2
√

1 + 1 = 2
√

2

Since the radius of C can not have both a radius of 5(1/2) and of 2(1/2), C can not contain both (2, 3) and
(0, 2). Therefore, either (2, 3) /∈ C or (0, 2) /∈ C. �

Comments:


