Proposition 1. Let $n \in \mathbb{N}$. If $n \geq 12$, then there are non-negative integers a and b such that $n=4 a+5 b$.
Proof. Base Case $(n=12)$: Let $n=12 . \mathrm{n}=4(3)+5(0)$, so the proposition is true for $n=12$.
Inductive step: Let $k \in \mathbb{N}$ and suppose that $k=4 a+5 b$ where $a, b \in \mathbb{Z}$ and $a, b \geq 0$. Note that $4(-1)+5(1)=1$ and that $4(4)+5(-3)=1$. Consider $k+1$. By the inductive hypothesis, $k+1=4 a+5 b+1$. If $a>0$, we can perform the following substitution:

$$
k+1=4 a+5 b+(4(-1)+5(1))
$$

Now, $k+1=4(a-1)+5(b+1)$, where $(a-1)$ and $(b+1)$ are non-negative integers. If $a=0$, we can perform a different substitution:

$$
k+1=4 a+5 b+(4(4)+5(-3))
$$

Now $k+1=4(a+4)+5(b-3)$, where $(a+4)$ and $(b-3)$ are non-negative integers. Thus, $k+1=4 a+5 b$ for some $a, b \in \mathbb{Z}$ with $a, b \geq 0$.

By induction, the proposition is true.

Comments:

Proposition 1. Let $n \in \mathbb{N}$. If $n \geq 12$, then there are non-negative integers a and b such that $n=4 a+5 b$.
Proof. Let $n \in \mathbb{N}$, and suppose that $n \geq 12$, then there are non-negative integers a and b such that $n=4 a+5 b$. $12=4 \times 3 ; 13=4 \times 2+5 ; 14=4+5 \times 2: 15=5 \times 3$. For $n \geq 15$, let $k=n \bmod 4(0 \geq k<4)$. By induction hypothesis, $n-k=4 a+5 b$ for some $a, b \geq 0$. Thus $n=4(a+1)+5 b$, so $n=4 a+5 b$. We proved this through induction.

Comments:

Proposition 1. Let $n \in \mathbb{N}$. If $n \geq 12$, then there are non-negative integers a and b such that $n=4 a+5 b$.
Proof. Let $n=12$. Then, $12=4(3)+5(0)$, where $a=3$ and $b=0$. Since a and b are non-negative integers, $n=12$ is true. Likewise, when $n=13,13=4(2)+5(1)$, where $a=2$ and $b=1$.
Let $k \in \mathbb{N}$, such that $k \geq 12$ and $k=4 a+5 b$, where $a, b \geq 0$.
Now, $k+1=4 a+5 b+1=4 a+5 b+(5-4)=4(a-4)+5 b+5=4(a-1)+5(b+1)$.
Thus, $k+1$ is also true. Since k is true and $k+1$ is true, then there are non-negative integers a and b when $n \geq 12$, such that $n=4 a+5 b$.

Comments:

Proposition 1. Let $n \in \mathbb{N}$. If $n \geq 12$, then there are non-negative integers a and b such that $n=4 a+5 b$
Proof. First, when $\mathrm{n}=12$, we have $12=4(3)+5(0)$, where $a=3$ and $b=0$ which verifies the base case because $a, b \in \mathbb{Z}$ and are non-negative. Proving by strong induction, we assume that there is integer $k \geq 12$ such that for every integer $i \in 12,13, \ldots, k$, there are non-negative integers a, b such that $i=4 a+5 b$. We will use cases to prove that this implies the result for $k+1$:
case 1: $k=12$: In this case, $k+1=13=4(2)+5(1)$.
case 2: $k=13$: For this case, $k+1=14=4(1)+5(2)$, and a pattern is beginning to develop between the coefficients of 4 and 5 , decreasing and increasing, respectively.
case 3: $k=14$: Again, we see that $k+1=4(0)+5(3)$, reinforcing the pattern.
case 4: $k \geq 15$. Then we can say that $(k+1)-4=k-3$. This is an integer between 12 and k, and by the inductive hypothesis, there are non-negative integers a, b such that $(k+1)-4=4 a+5 b$. This gives:
$k+1=4 a+5 b+4=4(a+1)+5 b$
Since $(a+1), b \in \mathbb{Z}$ and are non-negative, this proves the result, thus proving the case and concluding the proof.

Comments:

Proposition.

Let $n \in \mathbb{N}$. If $n \geq 12$, then there are non-negative integers a and b such that $n=4 a+5 b$.
Proof. Let $n \in \mathbb{N}$.
Base Case 1. $n=12$. Let $a=3$ and $b=0$. Then $n=4(3)+5(0)$. So $n=12$.
Base Case 2. $n=13$. Let $a=2$ and $b=1$. Then $n=4(2)+5(1)$. So $n=13$.
Base Case 3. $n=14$. Let $a=1$ and $b=2$. Then $n=4(1)+5(2)$. So $n=14$.
Base Case 4. $n=15$. Let $a=0$ and $b=3$. Then $n=4(0)+5(3)$. So $n=15$.
Prove $n=4 a+5 b$ for all non-negative integers a and b where $n \geq 12$.
Strong Inductive Hypothesis.
Suppose that for some $n \geq 12$, we also have that $12 \leq k \leq n$, there exists non-negative integers a and b such that $k=4 a+5 b$.

Inductive Step. Show that $n+1 \geq 16$.
Realize that $n+1$ is the same as $n-3+4$. Where $n-3 \geq 12$.
Using strong inductive hypothesis, $n-3=4 a+5 b$ for non-negative integers a and b .
Notice that $n+1$ can be written as $4(a+1)+5 b$.
Therefore, by strong induction, there are non-negative integers a and b such that $n=4 a+5 b$ where $n \in \mathbb{N}$ and $n \geq 12$.

Comments:

Proposition 1. Let $n \in \mathbb{Z}$. If $n \geq 12$, then there are non-negative integers a and b such that $n=4 a+5 b$
Proof. Let $n, a, b \in \mathbb{Z}$ and suppose $n \geq 12$ and $a, b \geq 0$
Let $n=12, a=3, b=0$.
Then,

$$
\begin{aligned}
& 12=4(3)+5(0) \\
& 12=12+0 \\
& 12=12
\end{aligned}
$$

For the sake of contradiction, suppose $n \neq 4 a+5 b$ for all $n \geq 12$ and $a, b \geq 0$.
Let $k>12$ be the smallest integer for which $k \neq 4 a+5 b$.
For $k-1=4 a+5 b$,

$$
\begin{aligned}
k & =4 a+5 b+1 \\
k & =4 a+5 b+5-4 \\
k & =4(a-1)+5(b+1)
\end{aligned}
$$

This means that $k=4 a+5 b$ since $k=4(a-1)+5(b+1)$ contradicts the form $k \neq 4 a+5 b$.
Thus, it was wrong to assume that it is untrue that $n=4 a+5 b$ for all $n \geq 12$.
Therefore, $n=4 a+5 b$ for all $n \geq 12$.

Comments:

Proposition 1. Let $n \in \mathbb{Z}$. If $n \geq 12$, then there are non-negative integers a and b such that $n=4 a+5 b$ Proof. Base Case:

$$
\begin{aligned}
& n=12 \Rightarrow 4(3)+5(0) \\
& n=13 \Rightarrow 4(2)+5(1) \\
& n=14 \Rightarrow 4(1)+5(2) \\
& n=15 \Rightarrow 4(0)+5(3)
\end{aligned}
$$

I.H. Suppose $n \in \mathbb{N}$ and $12 \leq n \leq k$ and $k \geq 15, k \in \mathbb{N}$. Now we must prove that $S_{k} \Rightarrow S_{k+1}$

If $k \geq 15$, then $k+1=k-3+4$ where $k-3 \geq 12$. We then observe that $k-3=4 a+5 b$ for some non-negative integers a, b. Hence, because you add another $4, k+1=k-3=4(a+1)+5 b$, where $a+1$ and b are non-negative integers. Thus, by strong induction, the equation holds.

Comments:

Proposition 1. Let $n \in \mathbb{N}$. If $n \geq 12$, then there are non-negative integers a and b such that $n=4 a+5 b$.
Proof. Let $n \in \mathbb{N}$ and suppose $n \geq 12$.
Base Case: Let $n=12$, then $12=4 a+5 b$ which holds for $a=3$ and $b=0$, $12=4(3)+5(0)$.
Since $n \geq 12$, let $n=13$, then $a=2$ and $b=1,13=4(2)+5(1)$.
Also $n=14$, which holds for $a=1$ and $b=2,14=4(1)+5(2)$.
And $n=15$, which holds for $a=0$ and $b=3,15=4(0)+5(3)$.
Then $n=16$, which holds for $a=4$ and $b=0,16=4(4)+5(0)$.
Inductive Step: Let $k \in \mathbb{N}, k \geq 12, k=4 a+5 b$.
Consider $n=(k+1)-5$, since $k \geq 16$ was proved by the base cases, then $m \geq 12$.
So $k-4$ can be plugged in $k-4=4 a+5 b$.
Thus $k=4(a+1)+5 b$, and $a, b \in \mathbb{N}$.
Therefore the proposition is true by induction.

Comments:

Proposition 1. Let $n \in \mathbb{N}$. If $n \geq 12$, then there are non-negative integers a and b such that $n=4 a+5 b$.
Proof. Proof by strong induction. Let $n \in \mathbb{N}$. The base cases are given below.

$$
\begin{aligned}
& n=12: 4(3)+5(0)=12 \\
& n=13: 4(2)+5(1)=13 \\
& n=14: 4(1)+5(2)=14 \\
& n=15: 4(0)+5(3)=15
\end{aligned}
$$

The inductive hypothesis is given as follows, if $n \in \mathbb{N}$ and $n>15$. Assume if $k \in \mathbb{N}$ with $12 \leq k<n$, then there are non-negative integers a, b with $4 a+5 b=k$. Consider $n=(n-4)+4$. Then $n-4>15-4=11$, so $12 \leq n-4<n$. By the inductive hypothesis $\exists a, b \in \mathbb{Z}$, where $a, b \geq 0$, and $4 a+5 b=n-4$. If $4 a+5 b=n-4$ then

$$
\begin{aligned}
& n-4-4 a=5 b \\
& n-4(1+a)=5 b \\
& n=5 b+4(a+1)
\end{aligned}
$$

Hence by strong induction the proof is true that if $n \geq 12$ then there are non-negative integers a and b such that $n=4 a+5 b$.

Comments:

Proposition 1. Let $n \in \mathbb{N}$. If $n \geq 12$, then there are non-negative integers a and b such that $n=4 a+5 b$.

Proof.

Base case 1. Suppose $n \geq 12$ and $n=4 a+5 b$ with a and b being non-negative integers.
$n=12=4(3)+5(0)$
$n=13=4(2)+5(1)$
$n=14=4(1)+5(2)$
$n=15=4(0)+5(3)$
Induction 1. Suppose $12 \geq m \geq k$ where $m=4 a+5 b$.
Hence, by strong induction hypothesis, we have that $n-2=4 a+5 b$ for some non-negative integers a and b .
Then, $n+1=n-2+3=4(a+1)+b$ where $\mathrm{a}+1$ and b are non-negative integers
Therefore, by strong induction, there are non-negative integers a and b such that $n=4 a+5 b$.

Comments:

Proposition 1. Let $n \in \mathbb{N}$. If $n \geq 12$, then there are non-negative integers a and b such that $n=4 a+5 b$.
Proof. Let $n \in \mathbb{N}, a, b \in \mathbb{Z}, n \geq 12$, and $a, b \geq 0$.
Let $\mathrm{n}=12$. Then $12=4 a+5 b$. Observe that when $a=3$ and $b=0$, it follows that $4(3)+5(0)=12$.
For sake of contradiction, suppose $n \neq 4 a+5 b$ for all $a, b \geq 0$. Let $k>12$ be the smallest integer for which $k \neq 4 a+5 b$. Then $k-1=4 a+5 b$, so $k=4 a+5 b+1$. It follows that $k=4 a+5 b+1=4 a+5 b+5-4=4(a-1)+5(b+1)$, which is a contradiction since $(a-1),(b+1) \in \mathbb{Z}$ and $a-1 \geq 0$ since $a=3$ in the smallest case of $n=12$. Therefore $n=4 a+5 b$ is true for every $n \geq 12$.

Comments:

Proposition 1. Let $n \in \mathbb{N}$. If $n \geq 12$, then there are non-negative integers a and b such that $n=4 a+5 b$.
Proof. by induction:
Base Case:
(1)

$$
\begin{aligned}
& (n=12): 12=4 a+5 b=4(3)+5(0)=12 \\
& (n=13): 13=4 a+5 b=4(2)+5(1)=13 \\
& (n=14): 14=4 a+5 b=4(1)+5(2)=14 \\
& (n=15): 15=4 a+5 b=4(0)+5(3)=15
\end{aligned}
$$

Inductive Step (strong induction): Suppose for some $n, k \in \mathbb{N} \geq 8$, For every $8 \leq n \leq k$, there exist non-negative integers such that $k=4 a+5 b$. Suppose $k \geq 16$. By Assumption, $\mathrm{k}-3$ is true. By the Inductive Hypothesis, $k-3=4 a+5 b$ for some $a, b \in \mathbb{N}$ because $k-3 \geq 12$. Therefore, we know $\mathrm{k}+1$ is true because $(k-3)+4=k+1$.

Comments:

Proposition 1. Let $n \in \mathbb{N}$. If $n \geq 12$, then there are non-negative integers a and b such that $n=4 a+5 b$.
Proof. Suppose $n \in \mathbb{N}$ and $n \geq 12$.
Suppose $a, b \in \mathbb{Z}$ and $a, b \geq 0$.
Base Cases: Let $n=12$. Then, $12=4(3)+5(0)$.
Let $n=13$. Then, $13=4(2)+5(1)$.
Let $n=14$. Then, $14=4(1)+5(2)$.
Let $n=15$. Then, $15=4(0)+5(3)$.
Let $n=16$. Then, $16=4(4)+5(0)$.
Inductive Step: Let $k \in \mathbb{N}$ and $k \geq 12$. Suppose $\forall l \in \mathbb{N}$ with $12 \leq l<k, l=4 a+5 b$.
Let $l=k-5$.
Moreover, $l+1=4 a+5 b$

$$
\begin{aligned}
& (k-5)+1=4 a+5 b \text { (by Inductive Hypothesis) } \\
& k-4=4 a+5 b \\
& k=4 a+5 b+4 \\
& k=(4 a+4)+5 b \\
& k=4(a+1)+5 b \text { and } a+1 \in \mathbb{N}
\end{aligned}
$$

Thus, k matches the form of n.
Therefore, $k+1=4 a+5 b$.

Comments:

Proposition 1. Let $n \in \mathbb{N}$. If $n \geq 12$, then there are non-negative integers a and b such that $n=4 a+5 b$.
Proof. Base Case: Let $n=12$. Then consider $a=3$ and $b=0$. Thus both a and b are non-negative integers and $12=4 a+5 b=4 * 3+5 * 0=12+0=12$.

Inductive Step: Let $k \in \mathbb{N}$ and $k \geq 12$. If $k=4 a+5 b$ for some non-negative integers a and b, then $k+1=4 c+5 d$ for some non-negative integers c and d.

Consider $c=a-1$ and $d=b+1$. Then $k+1=4 c+5 d=4(a-1)+5(b+1)=4 a-4+5 b+5=4 a+5 b+1=k+1$. Therefore, for $n \geq 12$ and $n \in \mathbb{N}$, there are non-negative integers a and b such that $n=4 a+5 b$

Comments:

Proposition 1. Let $n \in \mathbb{N}$. If $n \geq 12$, then there are non-negative integers a and b such that $n=4 a+5 b$.
Proof. The proof is by strong induction. Let $n \in \mathbb{N}$ and let $a, b \in \mathbb{Z} \geq 0$.
Base case. $n=12$ can be written as $4(3)+5(0)$ where $a=3$ and $b=0$.
Strong inductive hypothesis. Suppose that for some natural number $n \geq 12$, there exists an integer k where $12 \leq k \leq n$ such that $k=4 a+5 b$.

Inductive step.
Observe $n=13$. Then, $n+1=14$. $14=4(1)+5(2)$ where $a=1$ and $b=2$.
Observe $n \geq 14$. Then, $n+1=n-2+3$ where $n-2 \geq 12$. Thus, $n-2=4 a+5 b$ for some non-negative integers a and b . Since $n-2+3=3(a+1)+b$ where $\mathrm{a}+1$ and b are non-negative integers, then there are non-negative integers a and b such that $n=4 a+5 b$.

Comments:

