LOGIC

- 1. Determine if each of the following statements is true or false.
 - a) Either horses have 4 legs or 17 is not prime.
 - b) Neither do 3 quarters add up to one dollar, nor do horses have 4 legs.
 - c) If ducks have webbed feet, then Canada lies south of the equator.
 - d) If Canada lies south of the equator, then ducks are mammals.
- **2.** Make truth tables for the statements $P \lor (\neg P)$ and $P \land (\neg P)$.

Definition. A statement is a **contradiction** if its only possible truth value is false. A statement is a **tautology** if its only possible truth value is true.

3. Fill in the blank with a statement (written in normal English, like "ducks are mammals") that makes the entire statement true (no matter what P is).

- a) $[P \land (\neg P)] \implies$ _______ b) ______ $\implies [P \lor (\neg P)]$
- **4.** Make a truth table for the statement $P \implies (P \lor Q)$.

5. Make a truth table for the statement $[(P \implies Q) \land P] \implies Q$.

6. The statement in problem 4 might be expressed in English as "If P is true, then we know that either P or Q (or both) must be true." Produce a similar English version of the statement in problem $5.^1$

Date: January 24, 2022.

¹The tautology in problem 5 gives a logical rule called Modus Ponens.

- 7. Consider the statement, "In 2018 Dr. Axon gave an A to any student who got a perfect score on the final exam."
 - a) Express this as a statement of the form $P \implies Q$.
 - b) Suppose Adrian got a perfect score on the final exam. What can you conclude about Adrian's grade in the class?²
 - c) Blair didn't get an A in Prof. Axon's class. What can you conclude about Blair's score on the final exam?
 - d) You probably just used Modus Tollens, another very important tautology. Apply the same reasoning to fill in the blanks below to get Modus Tollens ...
 - ... in English: If P implies Q, and Q is not true, then _____

... in symbols: $[(P \implies Q) \land (\neg Q)] \implies$

Definition. The converse of $P \implies Q$ is $Q \implies P$. The contrapositive of $P \implies Q$ is $(\neg Q) \implies (\neg P)$.

- 8. Write a true statement (in English) that ...
 - a) ... has a true converse.
 - b) ... has a false converse.
 - c) ... has a true contrapositive.
 - d) ... has a false contrapositive.³

 $^{^{2}}$ You almost certainly used Modus Ponens to make this deduction.

³Or use a truth table to show that $P \implies Q$ is logically equivalent to its contrapositive