Determine if each statement is true or false. If it is true, prove it. If it is false, give a disproof.

1. There is an integer \(n \) such that \(n^2 \equiv -1 \pmod{13} \).

Solution. The statement is true. An example suffices to prove that such an integer exists: \(2(13) = 26 = 25 \equiv (-1) \). Hence \(5^2 \equiv -1 \pmod{13} \).

2. For all \(a, b, c \in \mathbb{Z} \), if \(a \mid bc \), then \(a \mid b \) or \(a \mid c \).

Solution. The statement is false. A counterexample suffices to prove the negation: there are \(a, b, c \in \mathbb{Z} \) such that \(a \mid bc \) but \(a \nmid b \) and \(a \nmid c \). Let \(a = 6, b = 2, \) and \(c = 3 \). We see that \(6 \mid 6 \) (so \(a \mid bc \)) but \(6 \nmid 2 \) (so \(a \nmid b \)) and \(6 \nmid 3 \) (so \(a \nmid c \)).

3. There are integers \(a \) and \(b \) such that \(12a + 15b = 2 \).

Solution. The statement is false. A disproof entails proving that for any integers \(a \) and \(b \) it follows that \(12a + 15b \neq 2 \). We proceed by contradiction. Suppose \(a \) and \(b \) are integers such that \(12a + 15b = 2 \). It follows that \(3(4a + 5b) = 2 \) and thus that \(3 \mid 2 \). This is a contradiction.

4. There are integers \(a \) and \(b \) such that \(11a + 15b = 1 \).

Solution. The statement is true. An example suffices to prove it: \(11(-4) + 15(3) = 1 \).

5. If \(X \subseteq A \cup B \), then \(X \subseteq A \) or \(X \subseteq B \).

Solution. The statement is false. A counterexample suffices to prove the negation: there are sets \(X, A, \) and \(B \) such that \(X \subseteq A \cup B \) but \(X \nsubseteq A \) and \(X \nsubseteq B \). Let \(X = \{1, 2\}, A = \{1\}, \) and \(B = \{2\} \). Then \(A \cup B = \{1, 2\} \supseteq X \) but \(X \nsubseteq A \) and \(X \nsubseteq B \).

Challenge. There is an integer \(n \) such that \(n^2 \equiv -1 \pmod{3} \).

Solution. This statement is false. A disproof entails proving that for any integer \(n \) it follows that \(n^2 \neq -1 \pmod{3} \). The proof I have in mind is direct and involves three cases: \(n \equiv 0 \pmod{3}, n \equiv 1 \pmod{3}, \) and \(n \equiv 2 \pmod{3} \). We can then determine that in the first case \(n^2 \equiv 0 \pmod{3} \) and in the latter two cases \(n^2 \equiv 1 \pmod{3} \). In none of these cases is \(n^2 \equiv -1 \pmod{3} \).