MATH 321 COLLECTED FORMULAS

A. Probability

Method. The number of ways to select k elements from an n-element set is...

	Order matters	Order doesn't matter
With replacement	n^k	$\binom{n+k-1}{k}$
Without replacement	$\frac{n!}{(n-k)!}$	$\binom{n}{k} = \frac{n!}{(n-k)!k!}$

Theorem. Properties of (all) probabilities:

- (1) $P(\emptyset) = 0$
- (2) $P(A) = 1 P(A^C)$
- (3) If $A \subseteq B$, then $P(A) \le P(B)$
- (4) $P(A \cup B) = P(A) + P(B) P(A \cap B)$

Definition. Let A and B be events with $P(B) \neq 0$. The conditional probability of A given B is

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

Definition. Events A and B are **independent** if and only if $P(A \cap B) = P(A)P(B)$.

Theorem (Multiplication rule for probabilities). Let A and B be events with $P(B) \neq 0$. Then

$$P(A \cap B) = P(A|B)P(B)$$

Theorem (The Law of Total Probability). If event B has probability strictly between 0 and 1, then

$$P(A) = P(A|B)P(B) + P(A|B^C)P(B^C)$$

Theorem (Bayes' Law). If A and B are events with positive probability, then

$$P(B|A) = \frac{P(A|B)P(B)}{P(A)}$$

B. RANDOM VARIABLES

Definition. A random variable X assigns a number to each outcome in the sample space S.

- (1) All random variables have a cumulative distribution function (CDF): $F(x) = P(X \le x)$.
- (2) A discrete random variable has a **probability mass function (PMF)**: p(x) = P(X = x).
- (3) A continuous random variable has a **probability density function (PDF)** f(x) such that for any numbers a and b (with $a \le b$)

$$P(a \le X \le b) = \int_{a}^{b} f(x)dx$$

Definition. Expected value (or mean):

- (1) If X is a discrete RV with PMF p(x), then $\mu = E(X) = \sum_{x} x p(x)$.
- (2) If X is a continuous RV with PDF f(x), then $\mu = E(X) = \int_{-\infty}^{\infty} x f(x) dx$.

 $\textbf{Definition. Variance}: \ \sigma^2 = \mathrm{Var}(X) = E\left[(X-\mu)^2\right] = E(X^2) - [E(X)]^2. \ \textbf{Standard deviation}: \ \sigma = \sqrt{\sigma^2}.$

Theorem. For any random variable X and any constants a and b:

- (1) E(aX + b) = aE(X) + b and
- (2) $Var(aX + b) = a^2 Var(X)$.

Theorem. If $X_1, X_2, ... X_n$ are independent, then

- (1) $E(X_1 + X_2 + \dots + X_n) = E(X_1) + E(X_2) + \dots + E(X_n)$
- (2) $Var(X_1 + X_2 + \dots + X_n) = Var(X_1) + Var(X_2) + \dots + Var(X_n)$

Date: December 11, 2019.

C. Statistics

C.1. Sampling.

Definition. A random sample of size n is a set of independent identically distributed random variables $X_1, X_2, \dots X_n$. Some sample statistics:

(1) The sample mean:
$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

(2) The sample variance:
$$S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2$$

Theorem. For any random sample from a population with mean μ and variance σ^2 :

(1)
$$E(\overline{X}) = \mu$$
 and $Var(\overline{X}) = \frac{\sigma^2}{n}$
(2) $E(S^2) = \sigma^2$

(2)
$$E(S^2) = \sigma^2$$

Definition. The sample standard error is $\frac{s}{\sqrt{n}}$

Definition. A sample statistic \hat{X} is an **unbiased estimator** of population parameter ρ if $E(\hat{X}) = \rho$.

Theorem. If \overline{X} is a the mean of a random sample from a normally distribution population, then \overline{X} is normally distributed (with mean and variance given in the last theorem).

Theorem (Central Limit Theorem). If \overline{X} is a the mean of a random sample from a population, then \overline{X} is approximately normally distributed (with mean and variance given in the theorem above).

C.2. Confidence (and prediction) intervals.

1.
$$100(1-\alpha)\%$$
 CI for μ (known σ): $\overline{x} \pm z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$

2.
$$100(1-\alpha)\%$$
 CI for μ (large sample): $\overline{x} \pm z_{\alpha/2} \frac{s}{\sqrt{n}}$

3.
$$100(1-\alpha)\%$$
 CI for μ (normal population): $\overline{x} \pm t_{\alpha/2,n-1} \frac{s}{\sqrt{n}}$

4.
$$100(1-\alpha)\%$$
 prediction interval for μ (normal population): $\overline{x} \pm t_{\alpha/2,n-1} \sqrt{\frac{s^2(n+1)}{n}}$

5.
$$100(1-\alpha)\%$$
 CI for $\mu_1 - \mu_2$ (known σ_1 and σ_2 , normal populations): $\overline{x} - \overline{y} \pm z_{\alpha/2} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$

6.
$$100(1-\alpha)\%$$
 CI for $\mu_1 - \mu_2$ (large samples): $\overline{x} - \overline{y} \pm z_{\alpha/2} \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$

7.
$$100(1-\alpha)\%$$
 CI for $\mu_1 - \mu_2$ (normal populations with the same variance): $\overline{x} - \overline{y} \pm t_{\alpha/2, n_1 + n_2 - 2} \sqrt{s_p^2 \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}$

$$s_p^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}$$
 is the pooled estimator of the common variance

8.
$$100(1-\alpha)\%$$
 CI for $\mu_1 - \mu_2$ (normal populations with difference variances): $\overline{x} - \overline{y} \pm t_{\alpha/2,\nu} \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$

$$\nu \approx \frac{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)^2}{\frac{\left(\frac{s_1^2}{n_1}\right)^2}{n_1 - 1} + \frac{\left(\frac{s_2^2}{n_2}\right)^2}{n_2 - 1}}$$
 (round down to the nearest integer)

9. Approximate $100(1-\alpha)\%$ CI for a proportion θ (large sample; x and n-x both large):

$$\frac{x}{n} \pm z_{\alpha/2} \sqrt{\frac{1}{n} \left(\frac{x}{n}\right) \left(1 - \frac{x}{n}\right)}$$

C.3. Test Statistics.

For tests about the mean $(H_0: \mu = \mu_0)$ test statistics are:

- $z = \frac{x \mu_0}{\sigma}$ (known variance σ^2 , all sample sizes if the pop. is normal, otherwise just large samples)
- $t = \frac{\overline{x} \mu_0}{\frac{s}{\sqrt{n}}}$ (samples from approximately normally distributed populations, n 1 degrees of freedom) R command: t.test(x)

For tests about the difference of two means $(H_0: \mu_1 - \mu_2 = \delta_0)$ some test statistics are:

- $z = \frac{\overline{x}_1 \overline{x}_2 \delta_0}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$ (known variances, all sample sizes if pops are normal, otherwise just large samples)
- $t = \frac{\overline{x}_1 \overline{x}_2 \delta_0}{s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$ (normally populations with the same variance, $n_1 + n_2 2$ d.f.).

$$s_p^2 = \frac{(n_1-1)s_1^2 + (n_2-1)s_2^2}{n_1 + n_2 - 2}$$
 R command: t.test(x, y, var.equal = T)

• $t = \frac{\overline{x}_1 - \overline{x}_2 - \delta_0}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$ (normally populations with different variances, ν degrees of freedom) $\nu \approx \frac{\left(\frac{s_1^2}{n_2} + \frac{s_2^2}{n_2}\right)^2}{\frac{\left(\frac{s_1^2}{n_1}\right)^2}{n_1 - 1} + \frac{\left(\frac{s_2^2}{n_2}\right)^2}{n_2 - 1}}$

For tests about a population proportion $(H_0: \theta = \theta_0)$ we can use the sample proportion $\hat{\Theta} = X/n$ or the sample total $X = n\hat{\Theta}$ and the test statistics are:

• x (X is binomial with parameters n and θ_0)

 \mathbf{R} command: binom.test(x, n, p= θ_0)

• $z = \frac{\hat{\theta} - \theta_0}{\sqrt{\frac{1}{\pi}\theta_0(1 - \theta_0)}} = \frac{x - n\theta_0}{\sqrt{n\theta_0(1 - \theta_0)}}$ (large samples, both $n\theta_0 \ge 10$ and $n(1 - \theta_0) \ge 10$)

For tests about the variance $(H_0: \sigma^2 = \sigma_0^2)$ the test statistic is:

• $\chi^2 = \frac{(n-1)s^2}{\sigma_n^2}$ (chi-square distribution, n-1 degrees of freedom)

For tests about the ratio of two variances $(H_0: \frac{\sigma_1^2}{\sigma_2^2} = 1)$ the test statistic is

• $\frac{s_1^2}{s_2^2}$ (F distribution with $n_1 - 1$ and $n_2 - 1$ degrees of freedom, order matters).

R command: var.test(x, y)

C.4. Linear regression.

Model (Linear regression). $\mu_{Y|X=x} = \alpha_1 + \beta_1 x$ or $y = \alpha_1 + \beta_1 x + \epsilon$. For most regression analysis we require $\epsilon \sim N(0, \sigma_{\epsilon}^2)$.

Verify that the linear model is reasonable by looking at a plot of your data: $> plot(y \sim x)$.

C.4.1. Regression statistics. Sample: $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$. Many of the statistics are calculated by R: > model<-lm(y~x) and > summary(model) will be useful.

$$\overline{x} = \frac{1}{n} \sum x_i \qquad \overline{y} = \frac{1}{n} \sum y_i$$

$$\hat{\alpha}_1 = \overline{y} - \hat{\beta}_1 \overline{x} \qquad \hat{\beta}_1 = \frac{S_{XY}}{S_{XX}}$$

$$S_{XX} = \sum (x_i - \overline{x})^2 \qquad S_{XY} = \sum (x_i - \overline{x})(y_i - \overline{y})$$

$$\hat{y}_i = \hat{\alpha}_1 + \hat{\beta}_1 x_i \qquad i^{\text{th}} \text{ residual: } e_i = y_i - \hat{y}_i$$

$$SST = S_{YY} = \sum (y_i - \overline{y})^2 \qquad SSE = \sum \left[y_i - (\hat{\alpha}_1 + \hat{\beta}_1 x_i)\right]^2 = \sum e_i^2$$

$$SSR = SST - SSE = \sum (\hat{y}_i - \overline{y})^2 \qquad s_{\epsilon}^2 = \frac{SSE}{n-2} \text{ (note: } s_{\epsilon} \text{ is residual standard error)}$$

$$\text{Coefficient of determination } r^2 = \frac{SSR}{SST} \qquad \text{Sample correlation } r = \frac{S_{XY}}{\sqrt{S_{XX}S_{YY}}} = \pm \sqrt{r^2}$$

C.4.2. Test statistics and confidence intervals. All assume $\epsilon \sim N(0, \sigma_{\epsilon}^2)$; you should check on this assumption before proceeding using the plots of residuals vs fitted values and normal Q-Q: > plot(model).

Test and interval concerning β_1 . Hypothesis test $H_0: \beta_1 = c$. Test stat: $t = \frac{\hat{\beta}_1 - c}{\frac{s_\epsilon}{\sqrt{S_{XX}}}}$ has a t dist with n-2

df. R tests $H_0: \beta_1 = 0$ against $H_0: \beta_1 \neq 0$ by default. $100(1-\alpha)\%$ confidence interval for β_1 :

$$\hat{\beta}_1 \pm t_{1-\alpha/2, n-2} \frac{s_{\epsilon}}{\sqrt{S_{XX}}}$$

CI and PI for the regression line. $100(1-\alpha)\%$ confidence interval for $\mu_{Y|X=x}$:

$$(\hat{\alpha}_1 + \hat{\beta}_1 x) \pm (t_{1-\alpha/2, n-2})(s_{\epsilon}) \sqrt{\frac{1}{n} + \frac{(x-\overline{x})^2}{S_{XX}}}$$

 $100(1-\alpha)\%$ prediction interval for Y given X=x:

$$(\hat{\alpha}_1 + \hat{\beta}_1 x) \pm (t_{1-\alpha/2, n-2})(s_{\epsilon}) \sqrt{1 + \frac{1}{n} + \frac{(x - \overline{x})^2}{S_{XX}}}$$

D. Special Discrete Distributions

Definition. A random variable X has a **discrete uniform distribution** if it is equally likely to assume any one of a finite set of possible values.

Definition. A random variable X has a **Bernoulli distribution** with parameter θ (with $0 < \theta < 1$) if its probability mass function is

$$m(x) = \begin{cases} 1 - \theta & \text{if } x = 0 \\ \theta & \text{if } x = 1 \end{cases}$$

The outcome 1 is often referred to as "success" while 0 is "failure" and the experiment is often called a Bernoulli trial.

Proposition. The mean and variance of a Bernoulli random variable are $\mu = \theta$ and $Var = \theta(1 - \theta)$.

Definition. The total number of successes in n independent, identically distributed (iid) Bernoulli trials is a random variable with a **Binomial distribution**. The probability mass function of a random variable X having a binomial distribution with parameters n and θ is

$$b(x) = \binom{n}{x} \theta^x (1-\theta)^{n-x} \text{ for } x = 0, 1, \dots, n$$

Proposition. The mean and variance of a binomial distribution are $\mu = n\theta$ and $Var = n\theta(1-\theta)$.

Definition. Let $X_1, X_2, ...$ be a sequence of independent, identically distributed (iid) Bernoulli trials, all with probability of success θ . Let N be the trial on which the first success occurs. The random variable N is said to have a **geometric distribution** with parameter θ and its probability mass function is

$$g(n) = \theta(1-\theta)^{n-1}$$
 for $n = 1, 2, 3, ...$

Proposition. The mean and variance of a geometric distribution are $\mu = \frac{1}{\theta}$ and $Var = \frac{1}{\theta} \left(\frac{1}{\theta} - 1 \right)$.

Definition. A random variable with the probability mass function

$$p(x) = \frac{\lambda^x e^{-\lambda}}{x!} \text{ for } x = 0, 1, 2, \dots$$

is said to have a **Poisson distribution** with parameter $\lambda > 0$.

Proposition. The mean and variance of a Poisson distribution are $\mu = \lambda$ and $Var = \lambda$.

E. Special Continuous Distributions

Definition. A random variable X with a uniform continuous distribution with parameters α and β (with

$$\alpha < \beta$$
) has the following probability density function:
$$f(x) = \begin{cases} \frac{1}{\beta - \alpha} & \text{if } \alpha < x < \beta \\ 0 & \text{elsewhere} \end{cases} .$$

Proposition. A uniform continuous distribution with parameters α and β has mean $\mu = \frac{\alpha + \beta}{2}$, and variance $\sigma^2 = \frac{(\beta - \alpha)^2}{12}$.

Definition. A random variable with an **exponential distribution** with parameter $\theta > 0$ has the following

probability density function:
$$g(x) = \begin{cases} \frac{1}{\theta}e^{-x/\theta} & \text{if } x > 0 \\ 0 & \text{elsewhere} \end{cases}$$

Proposition. An exponential distribution with parameter θ has mean $\mu = \theta$ and variance $\sigma^2 = \theta^2$.

Definition. A random variable with a **normal distribution** with parameters μ and $\sigma > 0$ has the following probability density function: $n(x; \mu, \sigma) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{1}{2} \left(\frac{x-\mu}{\sigma}\right)^2}$ for all $x \in \mathbb{R}$.

Proposition. A normal distribution with parameters μ and σ has mean $\mu = \mu$ and variance $\sigma^2 = \sigma^2$.