PROBABILITY SO FAR

The set of all **outcomes** for an **experiment** is called the **sample space** and we'll usually call it S. An **event** is a set of outcomes for a given experiment. The assignment of probabilities to events must obey the following rules:

Axioms of Probability. Axioms for probability:

(1) $P(E) \ge 0$ for any event E(2) P(S) = 1(3) If E_1, E_2, E_3, \ldots are disjoint events, then $P(E_1 \cup E_2 \cup E_3 \cup \ldots) = \sum_{i=1}^{\infty} P(E_i)$

Theorem. Some properties of sets:

(1) $(A \cup B)^C = A^C \cap B^C$ (2) $(A \cap B)^C = A^C \cup B^C$ (3) $A \cup A^C = S$ (4) $A = (A \cap B) \cup (A \cap B^C)$ and the sets $A \cap B$ and $A \cap B^C$ are disjoint

Theorem. If an experiment has n equally likely outcomes, then $P(E) = \frac{number \ of \ outcomes \ in \ E}{n}$

This means that counting is one of our basic tools for calculating probabilities.

Method. (Multiplication rule for counting) If a process occurs in two steps and there are m options for the first step and n options for the second, then there are mn total possibilities.

Method. The number of ways to select k elements from an n-element set is...

	Order matters	Order doesn't matter
With replacement	n^k	$\binom{n+k-1}{k}$
Without replacement	$\frac{n!}{(n-k)!}$	$\binom{n}{k} = \frac{n!}{(n-k)!k!}$

Theorem. Some properties of binomial coefficients:

$$(1) \binom{n}{k} = \binom{n}{n-k}$$

$$(2) \binom{n}{1} = \binom{n}{n-1} = n$$

$$(3) \binom{n}{2} = \frac{n(n-1)}{2}$$

$$(4) \binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}$$

$$(5) \sum_{k=0}^{n} \binom{n}{k} = 2^{n}$$

$$(6) (a+b)^{n} = \sum_{k=0}^{n} \binom{n}{k} a^{k} b^{n-k}$$

Date: September 15, 2019.

Theorem. Properties of (all) probabilities:

(1) $P(\emptyset) = 0$ (2) $P(E) = 1 - P(E^{C})$ (3) If $A \subseteq B$, then $P(A) \le P(B)$ (4) $P(A \cup B) = P(A) + P(B) - P(A \cap B)$

Note that property 4 can be rearranged: $P(A \cap B) = P(A) + P(B) - P(A \cup B)$.

Definition. Let A and B be events with $P(B) \neq 0$. The conditional probability of A given B is

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

Theorem (Multiplication rule for probabilities). Let A and B be events with $P(B) \neq 0$. Then

$$P(A \cap B) = P(A|B)P(B)$$

Theorem (Extended multiplication rule for probabilities). Let E_1, E_2, \ldots, E_n be events with $P(E_i) \neq 0$. Then

$$P(E_1 \cap E_2 \cap \dots \cap E_n) = P(E_1) P(E_2|E_1) P(E_3|E_1 \cap E_2) \dots P(E_n|E_1 \cap E_2 \cap \dots \cap E_{n-1})$$

Theorem (The Law of Total Probability). If event B has probability strictly between 0 and 1, then for any event A, $P(A) = P(A|B)P(B) + P(A|B^C)P(B^C)$.

Definition. Events E_1, E_2, \ldots, E_2 form a **partition** of S if

- (1) $E_1 \cup E_2 \cup \cdots \cup E_2 = S$ and
- (2) $E_i \cap E_j = \emptyset$ if $i \neq j$ (the events are pairwise disjoint).

Theorem (The Law of Total Probability Extended). If events E_1, E_2, \ldots, E_n each have probability strictly between 0 and 1 and form a partition of S, then for any event A,

$$P(A) = P(A|E_1)P(E_1) + P(A|E_2)P(E_2) + \dots + P(A|E_n)P(E_n)$$

Theorem (Bayes' Law). If A and B are events with positive probability, then

$$P(B|A) = \frac{P(A|B)P(B)}{P(A)}$$

Note: often the law of total probability is used to calculate P(A).

Example. Suppose 0.01% of a population carry a genetic disease (and have no obvious symptoms). Doctors screen for the disease using a test that correctly identifies carriers 99.9% of the time. The test also gives false positives 0.2% of the time. What is the probability that a random person who tests positive actually carries the disease?

Example. There are two taxi companies in Extremistan: Crimson Cab (which has 80% of the cars) and Tangerine Taxi (which owns the remaining 20%). A taxi from one of these companies sideswiped some parked cars. An eyewitness claims to have seen a Tangerine Taxi, but given the conditions (dusk) and distance (1 block) the eyewitness is considered to be only 75% reliable. Should Tangerine Taxi be found liable?

Definition. Events A and B are **independent** if and only if $P(A \cap B) = P(A)P(B)$.

Definition. A random variable X assigns a number to each outcome in the sample space S.

- (1) All random variables have a cumulative distribution function (CDF): $F(x) = P(X \le x)$.
- (2) A discrete random variable has a **probability mass function** (PMF): p(x) = P(X = x).
- (3) A continuous random variable has a **probability density function (PDF)** f(x) such that for any numbers a and b (with $a \le b$)

$$P(a \le X \le b) = \int_a^b f(x) dx$$

Example. Find the PMF of a random variable having the CDF

$$F(x) = \begin{cases} 0 & \text{if } x < 0\\ \frac{1}{6} & \text{if } 0 \le x < 1\\ \frac{1}{2} & \text{if } 1 \le x < 3\\ 1 & \text{if } 3 \le x \end{cases}$$

Example. Suppose you roll a fair 6-sided die until the first 6. Let X be the total number of rolls. Find the PMF of X.

Theorem. The CDF of any random variable satisfies the following:

- (1) it is non-decreasing: if $a \leq b$, then $F(a) \leq F(b)$
- (2) $\lim_{x\to\infty} F(x) = 0$ and $\lim_{x\to\infty} F(x) = 1$
- (3) If a < b, then $P(a < X \le b) = F(b) F(a)$

Theorem. The PMF of any random variable satisfies the following:

- (1) $0 \le p(x) \le 1$ for all x
- (2) $\sum_{x} p(x) = 1$ (where the sum is over all possible values of X)

Theorem. A function f may be the PDF of a random variable if and only if

(1) $f(x) \ge 0$ for all x^1 and (2) $\int_{-\infty}^{\infty} f(x) dx = 1.$

Definition. The expected value (or mean) of a random variable is a kind of weighted average and is denoted E(X) or μ .

- (1) If X is a discrete RV with PMF p(x), then $E(X) = \sum_{x \to \infty} xp(x)$.
- (2) If X is a continuous RV with PDF f(x), then $E(X) = \int_{-\infty}^{\infty} x f(x) dx$.

¹this is not technically required