Theorem 1 (The Central Limit Theorem). Let X_1, X_2, \ldots, X_n be iid with $E(X_i) = \mu$ and $V(X_i) = \sigma^2$. If n is sufficiently large then \bar{X} has an approximately normal distribution with mean $\mu_{\bar{X}} = \mu$ and variance $V(\bar{X}) = \frac{\sigma^2}{n}$.

Exercise 1 (Exercise 52). The lifetime of a certain type of battery is normally distributed with a mean value of 10 hours and a standard deviation of 1 hour. There are four batteries in a package. 95% of all packages will have a total lifetime less than what value?

Solution 1. We are interested in the total lifetime of the batteries in the package, T. The random variable T is normally distributed with mean $\mu_T = N\mu = 4(10) = 40$ and standard deviation $\sigma_T = \sigma\sqrt{n} = 2$.

We are looking for the 95th percentile of T. Start with the 95th percentile of a standard normal random variable, 1.645, and un-standardize. The 95th percentile of T is

$$1.645\sigma_T + \mu_T = 1.645(2) + 40 = 43.29$$

Exercise 2. Suppose that M&Ms are produced so that the average weight of an M&M is 2.2 g with a standard deviation of 0.4 g.

a) Use the central limit theorem to estimate the probability that the total weight of a package of 36 M&Ms is less than 75 g.

b) Estimate the probability that the total weight of a package of 100 M&Ms exceeds 225 g.

c) Find the value c such that about 98% of all packages of 100 M&Ms will have a total weight between $220 - c$ and $220 + c$.

Solution 2. We are interested again in the sample total weight T for a package of M&Ms. By the Central Limit Theorem for large enough n (more than 30) T will be normally distributed with mean $\mu_T = n\mu = n(2.2)$ and standard deviation $\sigma_T = \sigma\sqrt{n} = 0.4\sqrt{n}$.

a) The sample size of 36 is large enough for us to apply the CLT. For this sample size we have $\mu_T = 36\mu = 79.2$ and $\sigma_T = 6\sigma = 2.4$.

$$P(T \leq 75) \approx \Phi \left(\frac{75 - \mu_T}{\sigma_T} \right) = \Phi \left(\frac{75 - 79.2}{2.4} \right) = \Phi (-1.75) = 0.0401$$

b) Again we can apply the CLT, this time with $\mu_T = 100\mu = 220$ and $\sigma_T = 10\sigma = 4$.

$$P(T > 225) = 1 - P(T \leq 225) \approx 1 - \Phi \left(\frac{225 - \mu_T}{\sigma_T} \right) = 1 - \Phi (1.25) = 1 - 0.8944 = 0.1056$$

c) We have the same situation as in part (b). Symmetry of the distribution for T means that we $220 - c$ will be the first percentile for T. We find the first percentile of the standard normal distribution: -2.33. Standardizing $220 - c$, we find that

$$\frac{(220 - c) - 220}{4} = -2.33.$$

Solving for c gives

$$c = 4(2.33) = 9.32.$$
In real world applications of statistics we usually wish to use data from a sample to make inferences about population parameters. For example, the sample mean (for a random sample) is a reasonable estimate for the population mean, so we say that \overline{X} is a **point estimator** for the parameter μ. A point estimator $\hat{\Theta}$ for a parameter Θ is **unbiased** if $E(\hat{\Theta}) = \Theta$. Proposition 1 of section 5.4 tells us that \overline{X} is an unbiased estimator for μ.

The **standard error** of an estimator $\hat{\Theta}$ is its standard deviation $\sigma_{\hat{\Theta}}$. The standard error is a measurement of the accuracy of the estimator. Unfortunately the calculation of $\sigma_{\hat{\Theta}}$ often involves unknown parameters. The solution is to use an estimator for the unknown parameters. This gives the **estimated standard error** of the estimator $\hat{\Theta}$.

For example, the central limit theorem tells us that for large n the standard error for \overline{X} is $\frac{s}{\sqrt{n}}$ (where s is the population standard deviation). An unbiased estimator for σ is the sample standard deviation S given by

$$S^2 = \frac{\sum (X_i - \overline{X})^2}{n-1}.$$

The estimated standard error of \overline{X} is then $\frac{S}{\sqrt{n}}$.

Exercise 3. Tests of the shear strength of 10 random spot welds yield the following data (psi):

<table>
<thead>
<tr>
<th>392</th>
<th>376</th>
<th>401</th>
<th>367</th>
<th>389</th>
<th>362</th>
<th>409</th>
<th>415</th>
<th>358</th>
<th>375</th>
</tr>
</thead>
</table>

Assume that we know shear strength to be normally distributed.

a) Estimate the average shear strength of a spot weld.

b) Calculate the estimated standard error of your estimate in part a.

Solution 3.

a) Our best estimate for the average shear strength for all spot welds is the sample average \overline{x}.

$$\overline{x} = \frac{392 + 376 + \cdots + 375}{10} = 384.4$$

b) The estimated standard error will be $\hat{\sigma}_x = \frac{s}{\sqrt{10}}$. Use the shortcut formula $s^2 = \frac{\sum x^2 - n(\overline{x})^2}{n-1}$.

$$s^2 = \frac{392^2 + 376^2 + \cdots + 275^2 - 10(384.4)^2}{9} \approx 395.1556$$

$$\hat{\sigma}_x = \frac{s}{\sqrt{10}} \approx 6.286$$