FORMULAS

$$E(X) = \sum_{x} x f(x) \qquad Var(X) = E(X^2) - [E(X)]^2 \qquad \text{Bayes' Rule: } P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

The Law of Total Probability: P(B) = P(B|A)P(A) + P(B|A')P(A').

DISTRIBUTIONS

Bernoulli distribution with parameter θ : pdf $f(x) = \begin{cases} \theta & \text{if } x = 1 \\ 1 - \theta & \text{if } x = 0 \end{cases}$, mean $\mu = \theta$, variance $\sigma^2 = \theta(1 - \theta)$.

Geometric distribution with parameter θ : pdf $f(x) = \theta(1-\theta)^{x-1}$ for $x = 1, 2, 3, \ldots$, mean $\mu = \frac{1}{\theta}$, variance $\sigma^2 = \frac{1-\theta}{\theta^2}$.

Binomial distribution with parameters θ and n: pdf $f(x) = \binom{n}{x} \theta^x (1-\theta)^{n-x}$ for x = 0, 1, 2, ..., n, mean $\mu = n\theta$, variance $\sigma^2 = n\theta(1-\theta)$.

Poisson distribution with parameter $\lambda > 0$: $p(x) = \frac{\lambda^x e^{-\lambda}}{x!}$ for $x = 0, 1, 2, ..., \text{ mean } \mu = \lambda$, and variance $\sigma^2 = \lambda$.

Uniform continuous distribution on the interval (a,b): pdf $f(x) = \begin{cases} \frac{1}{b-a} & a < x < b \\ 0 & \text{otherwise} \end{cases}$, mean $\mu = \frac{a+b}{2}$, and variance $\sigma^2 = \frac{(b-a)^2}{12}$.

Exponential distribution with parameter $\lambda > 0$: pdf $g(x) = \begin{cases} \lambda e^{-\lambda x} & x > 0 \\ 0 & x \le 0 \end{cases}$, cdf $G(x) = \begin{cases} 1 - e^{-\lambda x} & x > 0 \\ 0 & x \le 0 \end{cases}$, mean $\mu = \frac{1}{\lambda}$, and variance $\sigma^2 = \frac{1}{\lambda^2}$.

Normal distribution with parameters μ and $\sigma > 0$: pdf $f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$, mean μ , and variance σ^2 .

CONFIDENCE INTERVALS

- $100(1-\alpha)\%$ confidence interval for μ : $\overline{x} \pm z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}$.
- $100(1-\alpha)\%$ confidence interval for μ : $\overline{x} \pm t_{\frac{\alpha}{2},n-1} \frac{s}{\sqrt{n}}$
- Approximate $100(1-\alpha)\%$ confidence interval for θ : $\hat{\theta} \pm z_{\frac{\alpha}{2}} \sqrt{\frac{\hat{\theta}(1-\hat{\theta})}{n}}$.
- $100(1-\alpha)\%$ confidence interval for σ^2 : $\left(\frac{(n-1)s^2}{\chi^2_{\frac{\alpha}{2},n-1}},\frac{(n-1)s^2}{\chi^2_{1-\frac{\alpha}{2},n-1}}\right)$.

Test statistics

• For tests about the mean $(H_0: \mu = \mu_0)$:

 $z = \frac{\overline{x} - \mu_0}{\frac{\sigma}{\sqrt{n}}}$ for samples from a population with a known variance σ^2 (all sample sizes if the population is normal, otherwise just for large samples);

$$z = \frac{\overline{x} - \mu_0}{\frac{s}{\sqrt{n}}}$$
 for large samples;

 $t = \frac{x - \mu_0}{\frac{s}{\sqrt{n}}}$ for small samples $(n \le 30 \text{ or as big as your } t\text{-table goes})$ from a normally distributed population. The test statistic has a t distribution with n - 1 degrees of freedom.

• For tests about a population proportion $(H_0: \theta = \theta_0)$:

x (X is binomial with parameters n and θ_0 , works best for small samples);

$$z = \frac{\hat{\theta} - \theta_0}{\sqrt{\frac{\theta_0(1 - \theta_0)}{n}}} = \frac{x - n\theta_0}{\sqrt{n\theta_0(1 - \theta_0)}} \text{ for large samples (both } n\theta_0 \ge 10 \text{ and } n(1 - \theta_0) \ge 10).$$

• For tests about the variance $(H_0: \sigma^2 = \sigma_0^2)$:

 $\chi^2 = \frac{(n-1)s^2}{\sigma_0^2}$ for samples from a normally distributed population. The test statistic has a chi-square distribution with n-1 degrees of freedom.

- For tests about the standard deviation: square the standard deviations and do a test for the variance.
- For tests about the difference of two means $(H_0: \mu_1 \mu_2 = \delta_0)$ the test statistics are:

$$z = \frac{\overline{x}_1 - \overline{x}_2 - \delta_0}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$$
 for samples from populations with a known variances (all sample sizes if the populations are

normal, otherwise just for large samples);

$$z = \frac{\overline{x}_1 - \overline{x}_2 - \delta_0}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$
 for large samples;

$$t = \frac{\sqrt{\frac{s_1}{n_1} + \frac{s_2}{n_2}}}{s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$$
 for small samples from normally distributed populations with the same variance $(n_1 + n_2 - 2 \text{ df})$.

Recall
$$s_p^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}.$$