Матн 321

A continuous random variable is a random variable which takes a continuum of possible values. The cumulative distribution function (cdf) is the same as ever $(F(x) = P(X \le x))$ for any random variable X).

Definition. Let X be a continuous random variable. A **probability density function** (pdf) for X is any function f such that

$$P(a < X < b) = \int_{a}^{b} f(x)dx$$

for any real numbers a and b with a < b.

Note that the probability density function of a continuous random variable does not give probabilities directly: the values of f(x) are not probabilities. In contrast, the probability distribution function of a discrete random variable gives probabilities directly. Making the distinction between discrete and continuous random variables is essential.

Thoerem. A function f may be the probability density function of a continuous random variable if and only if

1. $f(x) \ge 0$ for all x and 2. $\int_{-\infty}^{\infty} f(x) dx = 1.$

Thoerem. If X is a continuous random variable, then

- 1. P(X = a) = 0 for every number a
- 2. $P(a \le X \le b) = P(a < X \le b) = P(a \le X < b) = P(a < X < b)$ for every numbers a and b

Definition. Let X be a continuous random variable and let f(x) be a probability distribution function for X. The expected value (or mean) of X is $\mu = E(X) = \int_{-\infty}^{\infty} x f(x) dx$. The median is the number $\tilde{\mu}$ such that $0.5 = \int_{-\infty}^{\tilde{\mu}} f(x) dx$. In terms of

the cdf F, $\tilde{\mu}$ is the number such that $F(\tilde{\mu}) = 0.5$ (equivalently, $\tilde{\mu} = F^{-1}(0.5)$). The usual calculating formula for the variance still works: $\sigma^2 = Var(X) = E(X^2) - [E(X)]^2$. For a continuous random variable $E(X^2) = \int_{-\infty}^{\infty} x^2 f(x) dx.$

Definition. Let X be any random variable (continuous or discrete). The cumulative distribution function of X is F(x) = $P(X \le x).$

Thoerem. If X is a continuous random variable with probability density function f and cumulative distribution function F. then

1.
$$F(x) = \int_{-\infty}^{x} f(t)dt$$

2. $f(x) = F'(x).$

Thoerem. If X is a discrete random variable with probability distribution function f and cumulative distribution function F, then

1.
$$F(x) = \sum_{n \le x} f(n)$$
 (where the sum is over all possible values of X that are less than or equal to x)

2.
$$f(x) = \left[\lim_{t \to x^+} F(t)\right] - \left[\lim_{t \to x^-} F(t)\right].$$

Special continuous distributions:

A random variable has a *uniform continuous distribution* on the interval (a, b) if its probability density function is

$$f(x) = \begin{cases} \frac{1}{b-a} & a < x < b\\ 0 & \text{otherwise} \end{cases}$$

In this case its expected value is $\mu = \frac{a+b}{2}$ and its variance is $\sigma^2 = \frac{(b-a)^2}{12}$. A random variable has an *exponential distribution* with parameter $\lambda > 0$ if its probability density function is

$$g(x) = \begin{cases} \lambda e^{-\lambda x} & x \ge 0\\ 0 & x < 0 \end{cases}$$

In this case its expected value is $\mu = \frac{1}{\lambda}$ and its variance is $\sigma^2 = \frac{1}{\lambda^2}$. A random variable has a *normal distribution* with parameters μ and $\sigma > 0$ if its probability density function is

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$$

In this case its expected value is μ and its variance is σ^2 . If $\mu = 0$ and $\sigma = 1$, then the random variable has a standard normal distribution. The cumulative distribution function of a standard normal random variable is $\Phi(x)$ and its values are given in table A.3 of the textbook.

Special discrete distributions:

A random variable has a *Poisson distribution* with parameter $\lambda > 0$ if its probability distribution function is

$$p(x) = \frac{\lambda^{x} e^{-\lambda}}{x!}$$
 for $x = 0, 1, 2, ...$

In this case its expected value is $\mu = \lambda$ and its variance is $\sigma^2 = \lambda$.

A random variable has a binomial distribution with parameters n and θ (with n a positive integer and $0 < \theta < 1$) if its probability distribution function is

$$b(x) = {\binom{n}{x}} \theta^x (1-\theta)^{n-x}$$
 for $x = 0, 1, 2, ..., n$

In this case its expected value is $\mu = n\theta$ and its variance is $\sigma^2 = n\theta(1-\theta)$.

Thoerem. If X is a binomial random variable with parameters n and θ and both $n\theta \ge 10$ and $n(1-\theta) \ge 10$, then X is approximately normal with mean $\mu = n\theta$ and $\sigma = \sqrt{n\theta(1-\theta)}$.

Example 1. If X is binomial with parameters n = 100 and $\theta = 0.3$, then

$$P(X \le 25) \approx P\left(Z \le \frac{25.5 - 100(0.3)}{\sqrt{100(0.3)(1 - 0.3)}}\right) \approx \Phi(-0.98) = 0.1635$$

Here we have used the correction for continuity, which is why we have 25.5 instead of 25.

Example 2. Find the mean of the random variable with cdf $F(x) = \begin{cases} 1 - \frac{1}{x^2} & \text{if } x > 1 \\ 0 & \text{otherwise} \end{cases}$. We first must find the pdf

 $f(x) = F'(x) = \begin{cases} \frac{2}{x^3} & \text{if } x > 1\\ 0 & \text{otherwise} \end{cases}$ Then $\mu = \int_{-\infty}^{\infty} x f(x) dx = \int_{1}^{\infty} \frac{2}{x^2} dx = \left[-\frac{2}{x}\right]_{1}^{\infty} = 2$. Note that the variance of this random variable is undefined because $\int_{-\infty}^{\infty} x^2 f(x) dx$ is a divergent improper integral.