Estimators

1. Suppose that we collect a random sample of size 9 from a population that is uniformly distributed on the interval $[0, \beta]$. This makes the probability density function of the population $f(x) = \frac{1}{\beta}$ for $0 < x < \beta$.

a) Find a constant a such that $a\overline{X}$ is an unbiased estimator of β .

b) Let Y be the largest number in the sample. Find the cumulative distribution function of Y.

c) Find a constant b such that bY is an unbiased estimator of β .

d) Calculate the variances of $a\overline{X}$ and bY and use these numbers to decide which of the two unbiased estimators is better.

2. Let Z be a standard normal random variable.

- a) Find a number z such that P(|Z| < z) = 0.95.
- b) Rearrange the inequality of part a to fill in the blanks in the following expression:

 $P(Z - _ < 0 < Z + _) = 0.95$

3. Let \overline{X} be the mean of a random sample of size n = 9 from a normally distributed population with mean μ (unknown) and standard deviation $\sigma = 12$. This means that X is normally distributed with mean μ and standard deviation $\frac{\sigma}{\sqrt{n}} = 4$.

a) Using your work in problem 2 as a guide, fill in the blanks in the following expression:

 $P(\overline{X} - \underline{\qquad} < \mu < \overline{X} + \underline{\qquad}) = 0.95$

b) Samples are taken and you find $\overline{x} = 50$. Substitute this value in for \overline{X} in part at o find the 95% confidence interval for the population mean μ .

c) What's wrong with the expression $P(42.16 < \mu < 57.84) = 0.95$?

d) Your 95% confidence interval is actually just the interval (42.16, 57.84). What do these numbers mean?