SPECIAL DISCRETE DISTRIBUTIONS

Definition. A random variable X has a discrete uniform distribution if it is equally likely to assume any one of a finite set of possible values.

Examples. Flip a fair coin. Roll a single (fair) die. Choose a winning number in a lottery.
Definition. A random variable X has a Bernoulli distribution with parameter p (with $0<p<1$) if its has two possible values, 0 and 1 , and $P(X=1)=0$ The PMF of a Bernoulli random variable is

$$
m(x)= \begin{cases}1-p & \text { if } x=0 \\ p & \text { if } x=1\end{cases}
$$

The outcome 1 is often referred to as "success" while 0 is "failure" and the experiment is often called a Bernoulli trial.

Proposition. The mean and variance of a Bernoulli random variable are $\mu=p$ and $\sigma^{2}=p(1-p)$.
Examples. Flip a biased coin once. Ask a random person a yes or no question. Play the lottery once.
Definition. The total number of successes in n independent, identically distributed (iid) Bernoulli trials with parameter p is a random variable with a Binomial distribution. The PMF of a random variable X having a binomial distribution with parameters n and p is

$$
b(x)=\binom{n}{x} p^{x}(1-p)^{n-x} \text { for } x=0,1, \ldots, n
$$

Proposition. The mean and variance of a binomial distribution are $\mu=n p$ and $\sigma^{2}=n p(1-p)$.
Examples. Flip 6 fair coins and count the number of heads ($X \sim \operatorname{binom}(6,1 / 2)$). Roll 5 dice and count the number of sixes ($X \sim \operatorname{binom}(5,1 / 6)$). Ask 15 random people (selected with replacement) a yes or no question and count yeses $(X \sim \operatorname{binom}(15, p)$ where p is the proportion of yeses in the population).

R Implementation. If $X \sim \operatorname{binom}(n, p)$, then the PMF is $>\operatorname{dbinom}(\mathrm{x}, \mathrm{n}, \mathrm{p})$ and the CDF is $>$ pbinom(x, n, p.

Definition. Let X_{1}, X_{2}, \ldots be a sequence of independent, identically distributed (iid) Bernoulli trials, all with probability of success p. Let N be the trial on which the first success occurs. The random variable N is said to have a geometric distribution with parameter p and its PMF is

$$
g(n)=p(1-p)^{n-1} \text { for } n=1,2,3, \ldots
$$

Proposition. The mean and variance of a geometric distribution are $\mu=\frac{1}{p}$ and $\sigma^{2}=\frac{1}{p}\left(\frac{1}{p}-1\right)$.
Examples. Flip a biased coin until the first heads appears ($N \sim$ geom(1/2)). Roll a die until you first get a $\operatorname{six}(N \sim$ geom $(1 / 6))$. Ask randomly people (selected with replacement) a yes or no question until you first get a yes $(N \sim \operatorname{geom}(p)$ where p is the proportion of yeses in the population).

R Implementation. If $X \sim \operatorname{geom}(p)$, then the PMF is $>\operatorname{dgeom}(\mathrm{x}, \mathrm{p})$ and the CDF is $>\operatorname{pgeom}(\mathrm{x}$, p).

Definition. Suppose n elements are to be selected without replacement from a population of size N of which k are successes. The number of successes selected is a hypergeometric random variable and its PMF is

$$
h(x)=\frac{\binom{k}{x}\binom{N-k}{n-x}}{\binom{N}{n}}
$$

Proposition. The mean and variance of a hypergeometric distribution are $\mu=\frac{n k}{N}$ and $\sigma^{2}=\frac{n k(N-k)(N-n)}{k^{2}(N-1)}$.
Definition. A random variable with the probability mass function

$$
p(x)=\frac{\lambda^{x} e^{-\lambda}}{x!} \text { for } x=0,1,2, \ldots
$$

is said to have a Poisson distribution with parameter λ (where $\lambda>0$).
Proposition. The mean and variance of a Poisson distribution are $\mu=\lambda$ and $\sigma^{2}=\lambda$.
R Implementation. If $X \sim \operatorname{pois}(\lambda)$, then the PMF is $>\operatorname{dpois}(x, \lambda)$ and the CDF is $>$ ppois (x. $\lambda)$.

