EXAM 2 FORMULAS

Definition. Let A and B be events with $P(B) \neq 0$. The conditional probability of A given B is

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

Definition. Events A and B are **independent** if and only if $P(A \cap B) = P(A)P(B)$.

Definition. A random variable X assigns a number to each outcome in the sample space S.

- (1) All random variables have a cumulative distribution function (CDF): $F(x) = P(X \le x)$.
- (2) A discrete random variable has a **probability mass function** (**PMF**): m(x) = P(X = x).
- (3) A continuous random variable has a probability density function (PDF) f(x) such that for any

numbers a and b (with
$$a \le b$$
) $P(a \le X \le b) = \int_a^b f(x) dx$

Thoerem. The CDF of a random variable X satisfies the following:

- (1) it is non-decreasing: if $a \leq b$, then $F(a) \leq F(b)$
- (2) $\lim_{x\to\infty} F(x) = 0$ and $\lim_{x\to\infty} F(x) = 1$

Thoerem. The PMF of any discrete random variable X satisfies the following:

(1) $0 \le p(x) \le 1$ for all x

(2) $\sum_{x} p(x) = 1$ (where the sum is over all possible values of X)

Thoerem. A PDF for a random variable satisfies the following:

(1)
$$f(x) \ge 0$$
 for all x
(2) $\int_{-\infty}^{\infty} f(x) dx = 1$

Definition. The **expected value** (or **mean**) of a random variable:

- (1) If X is a discrete RV with PMF m(x), then $E(X) = \sum_x xm(x)$. (2) If X is a continuous RV with PDF f(x), then $E(X) = \int_{-\infty}^{\infty} xf(x)dx$.

Definition. The variance of a random variable: $\operatorname{Var}(X) = \sigma^2 = E\left[(X-\mu)^2\right] = E(X^2) - [E(X)]^2$. The standard deviation is $\sigma = \sqrt{\sigma^2}$.

Definition. The PMF of a random variable having a **binomial distribution** with parameters n and p is

$$b(x) = \binom{n}{x} p^x (1-p)^{n-x} \text{ for } x = 0, 1, 2, \dots, n$$

Proposition. The mean of a binomial distribution is $\mu = np$ and the variance is $\sigma^2 = np(1-p)$.

Definition. The PMF of a random variable having a **geometric distribution** with parameter p is

$$g(n) = p(1-p)^{n-1}$$
 for $n = 1, 2, 3, ...$

Proposition. The mean of a geometric distribution is $\mu = \frac{1}{p}$ and the variance is $\sigma^2 = \frac{1-p}{p^2}$.

Definition. The PMF of a random variable having a **Poisson distribution** with parameter λ is

$$p(x) = \frac{\lambda^{x} e^{-\lambda}}{x!}$$
 for $x = 0, 1, 2, ...$

Proposition. The mean and variance of a Poisson distribution are $\mu = \lambda$ and $\sigma^2 = \lambda$.

Definition. A random variable X with a **uniform continuous distribution** with parameters α and β (with $\alpha < \beta$) has the PDF $\left| f(x) = \frac{1}{\beta - \alpha} \text{ for } \alpha < x < \beta \right|$.

Proposition. A uniform continuous distribution with parameters α and β has mean $\mu = \frac{\alpha + \beta}{2}$, and variance $\sigma^2 = \frac{(\beta - \alpha)^2}{12}.$

Definition. A random variable with an **exponential distribution** with parameter $\lambda > 0$ has the following PDF

and CDF
$$g(x) = \lambda e^{-\lambda x}$$
 for $x > 0$ and $G(x) = \begin{cases} 1 - e^{-\lambda x} & \text{for } x > 0 \\ 0 & \text{for } x \le 0 \end{cases}$

Date: February 19, 2020.

Proposition. An exponential distribution with parameter λ has mean $\mu = \frac{1}{\lambda}$ and variance $\sigma^2 = \frac{1}{\lambda^2}$.

Definition. A random variable with a **normal distribution** with parameters μ and $\sigma > 0$ has the PDF $n(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$ for all $x \in \mathbb{R}$

Proposition. A normal distribution with parameters μ and σ has mean $\mu = \mu$ and variance $\sigma^2 = \sigma^2$ (and standard deviation $\sigma = \sigma$).

Theorem (Standardizing). If $X \sim N(\mu, \sigma)$, then $Z = \frac{X - \mu}{\sigma}$ is a standard normal random variable.