\square 1. A multiple choice quiz has 5 questions, each of which has 4 choices for the answer (a, b, c, or d), exactly one of which is correct. If you answer totally at random, what is the probability that you get 4 or more answers correct?
2. A die has 6 faces numbered $1,2,2,3,3,3$. Assuming the die is fair and each face is equally likely to be rolled, what are the mean and variance of a roll of the die?
3. The probability mass function of a discrete random variable X is given in the table below. Calclulate $E(X)$.

$$
\begin{array}{r|cccc}
x & 1 & 2 & 3 & 4 \\
\hline P(X=x) & 0.1 & 0.2 & 0.3 & 0.4
\end{array}
$$

\square 4. A continuous random variable has the probability density function given below. Find the cumulative distribution function of the random variable.

$$
f(x)= \begin{cases}2 x e^{-x^{2}} & \text { if } x>0 \\ 0 & \text { otherwise }\end{cases}
$$

5. Let X be a normally distributed random variable with mean 2.2 and standard deviation 0.6.
a) Calculate $P(X=1)$
b) Calculate $P(X \geq 1)$
\square 6. A random variable X is normally distributed with mean $\mu=200$ and variance $\sigma^{2}=25$. Calculate $P(196<X \leq 206)$.
\square 7. Let Z be a standard normal random variable. Calculate $P(|Z|<1)$.8. Let X be a continuous random variable with cumulative distribution function

$$
F(x)= \begin{cases}1-\frac{1}{x^{3}} & \text { if } x>1 \\ 0 & \text { otherwise }\end{cases}
$$

Calculate the expected value of X.
\square 9. Let X be a continuous random variable with probability density function

$$
f(x)= \begin{cases}\frac{1}{2} x & \text { if } 0 \leq x<2 \\ 0 & \text { otherwise }\end{cases}
$$

Calculate the variance of X.
10. Let X be a continuous random variable with probability density function

$$
f(x)= \begin{cases}5(1-x)^{4} & \text { if } 0<x<1 \\ 0 & \text { otherwise }\end{cases}
$$

Find the cumulative distribution function of X.
\square 11. Analysis of data collected by the Pacific Northwest Seismic Network shows that the number of earthquakes per year in the pacific northwest is a Poisson random variable with a mean of 2.6 . What is the probability of 2 or more earthquakes in a year?
12. A baker has analyzed her sales records and discovered that the number of customers who come to her shop to buy a cake in a day is a Poisson random variable with parameter $\lambda=2$. Suppose the baker has made 3 cakes. Let X be the number of cakes she sells. Calculate the expected value of X.
13. The temperature reading of a thermocouple (in ${ }^{\circ} \mathrm{C}$) is a normally distributed random variable with mean equal to the actual temperature, and standard deviation σ. How small must σ be in order to ensure that 99% of all readings are within $0.5^{\circ} \mathrm{C}$ of the actual temperature?

Challenge 1. A baker has analyzed her sales records and discovered that the number of customers who come to her shop to buy a cake in a day is a Poisson random variable with parameter $\lambda=2$. Suppose the baker has made 3 cakes. Let X be the number of cakes she sells. Calculate the expected value of X.
Challenge 2. The lifetime of a printer costing $\$ 200$ is exponentially distributed with a mean of 2 years. The manufacturer will pay a full refund if the printer fails in its first year of operation. No refund is given for later failures. Calculate the mean refund for a printer.

