MATH 321 COLLECTED FORMULAS

A. Probability

Method. The number of ways to select k elements from an n-element set is...

	Order matters	Order doesn’t matter
With replacement	n^{k}	$\binom{n+k-1}{k}$
Without replacement	$\frac{n!}{(n-k)!}$	$\binom{n}{k}=\frac{n!}{(n-k)!k!}$

Theorem. Properties of (all) probabilities:
(1) $P(\emptyset)=0$
(2) $P(A)=1-P\left(A^{C}\right)$
(3) If $A \subseteq B$, then $P(A) \leq P(B)$
(4) $P(A \cup B)=P(A)+P(B)-P(A \cap B)$

Definition. Let A and B be events with $P(B) \neq 0$. The conditional probability of A given B is

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}
$$

Definition. Events A and B are independent if and only if $P(A \cap B)=P(A) P(B)$.
Theorem (Multiplication rule for probabilities). Let A and B be events with $P(B) \neq 0$. Then

$$
P(A \cap B)=P(A \mid B) P(B)
$$

Theorem (The Law of Total Probability). If event B has probability strictly between 0 and 1 , then

$$
P(A)=P(A \mid B) P(B)+P\left(A \mid B^{C}\right) P\left(B^{C}\right)
$$

Theorem (Bayes' Law). If A and B are events with positive probability, then

$$
P(B \mid A)=\frac{P(A \mid B) P(B)}{P(A)}
$$

B. Random Variables

Definition. A random variable X assigns a number to each outcome in the sample space S.
(1) All random variables have a cumulative distribution function (CDF): $F(x)=P(X \leq x)$.
(2) A discrete random variable has a probability mass function (PMF): $p(x)=P(X=x)$.
(3) A continuous random variable has a probability density function (PDF) $f(x)$ such that for any numbers a and b (with $a \leq b$)

$$
P(a \leq X \leq b)=\int_{a}^{b} f(x) d x
$$

Definition. Expected value (or mean):
(1) If X is a discrete RV with PMF $p(x)$, then $\mu=E(X)=\sum_{x} x p(x)$.
(2) If X is a continuous RV with PDF $f(x)$, then $\mu=E(X)=\int_{-\infty}^{\infty} x f(x) d x$.

Definition. Variance: $\sigma^{2}=\operatorname{Var}(X)=E\left[(X-\mu)^{2}\right]=E\left(X^{2}\right)-[E(X)]^{2}$. Standard deviation: $\sigma=\sqrt{\sigma^{2}}$.
Theorem. For any random variable X and any constants a and b :
(1) $E(a X+b)=a E(X)+b$ and
(2) $\operatorname{Var}(a X+b)=a^{2} \operatorname{Var}(X)$.

Theorem. If $X_{1}, X_{2}, \ldots X_{n}$ are independent, then
(1) $E\left(X_{1}+X_{2}+\cdots+X_{n}\right)=E\left(X_{1}\right)+E\left(X_{2}\right)+\cdots+E\left(X_{n}\right)$
(2) $\operatorname{Var}\left(X_{1}+X_{2}+\cdots+X_{n}\right)=\operatorname{Var}\left(X_{1}\right)+\operatorname{Var}\left(X_{2}\right)+\cdots+\operatorname{Var}\left(X_{n}\right)$

C. Statistics

C.1. Sampling.

Definition. A random sample of size n is a set of independent identically distributed random variables $X_{1}, X_{2}, \ldots X_{n}$. Some sample statistics:
(1) The sample mean: $\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$
(2) The sample variance: $S^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}$

Theorem. For any random sample from a population with mean μ and variance σ^{2} :
(1) $E(\bar{X})=\mu$ and $\operatorname{Var}(\bar{X})=\frac{\sigma^{2}}{n}$
(2) $E\left(S^{2}\right)=\sigma^{2}$

Definition. The sample standard error is $\frac{s}{\sqrt{n}}$
Definition. A sample statistic \hat{X} is an unbiased estimator of population parameter ρ if $E(\hat{X})=\rho$.
Theorem. If \bar{X} is a the mean of a random sample from a normally distribution population, then \bar{X} is normally distributed (with mean and variance given in the last theorem).
Theorem (Central Limit Theorem). If \bar{X} is a the mean of a random sample from a population, then \bar{X} is approximately normally distributed (with mean and variance given in the theorem above).

C.2. Confidence (and prediction) intervals.

1. $100(1-\alpha) \%$ CI for $\mu($ known $\sigma): \bar{x} \pm z_{\alpha / 2} \frac{\sigma}{\sqrt{n}}$
2. $100(1-\alpha) \%$ CI for μ (large sample): $\bar{x} \pm z_{\alpha / 2} \frac{s}{\sqrt{n}}$
3. $100(1-\alpha) \%$ CI for μ (normal population): $\bar{x} \pm t_{\alpha / 2, n-1} \frac{s}{\sqrt{n}}$
4. $100(1-\alpha) \%$ prediction interval for μ (normal population): $\bar{x} \pm t_{\alpha / 2, n-1} \sqrt{\frac{s^{2}(n+1)}{n}}$
5. $100(1-\alpha) \%$ CI for $\mu_{1}-\mu_{2}$ (known σ_{1} and σ_{2}, normal populations): $\bar{x}-\bar{y} \pm z_{\alpha / 2} \sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}}$
6. $100(1-\alpha) \%$ CI for $\mu_{1}-\mu_{2}$ (large samples): $\bar{x}-\bar{y} \pm z_{\alpha / 2} \sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}}$
7. $100(1-\alpha) \%$ CI for $\mu_{1}-\mu_{2}$ (normal populations with the same variance): $\bar{x}-\bar{y} \pm t_{\alpha / 2, n_{1}+n_{2}-2} \sqrt{s_{p}^{2}\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}$ $s_{p}^{2}=\frac{\left(n_{1}-1\right) s_{1}^{2}+\left(n_{2}-1\right) s_{2}^{2}}{n_{1}+n_{2}-2}$ is the pooled estimator of the common variance
8. $100(1-\alpha) \%$ CI for $\mu_{1}-\mu_{2}$ (normal populations with difference variances): $\bar{x}-\bar{y} \pm t_{\alpha / 2, \nu} \sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}}$

$$
\nu \approx \frac{\left(\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}\right)^{2}}{\frac{\left(\frac{s_{1}^{2}}{n_{1}}\right)^{2}}{n_{1}-1}+\frac{\left(\frac{s_{2}^{2}}{n_{2}}\right)^{2}}{n_{2}-1}} \text { (round down to the nearest integer) }
$$

9. Approximate $100(1-\alpha) \%$ CI for a proportion θ (large sample; x and $n-x$ both large): $\frac{x}{n} \pm z_{\alpha / 2} \sqrt{\frac{1}{n}\left(\frac{x}{n}\right)\left(1-\frac{x}{n}\right)}$

C.3. Test Statistics.

For tests about the mean $\left(H_{0}: \mu=\mu_{0}\right)$ test statistics are:

- $z=\frac{\bar{x}-\mu_{0}}{\frac{\sigma}{\sqrt{n}}}$ (known variance σ^{2}, all sample sizes if the pop. is normal, otherwise just large samples)
- $t=\frac{\bar{x}-\mu_{0}}{\frac{s}{\sqrt{n}}}$ (samples from approximately normally distributed populations, $n-1$ degrees of freedom) \mathbf{R} command: t.test (x)
For tests about the difference of two means ($H_{0}: \mu_{1}-\mu_{2}=\delta_{0}$) some test statistics are:
- $z=\frac{\bar{x}_{1}-\bar{x}_{2}-\delta_{0}}{\sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}}}$ (known variances, all sample sizes if pops are normal, otherwise just large samples)
- $t=\frac{\bar{x}_{1}-\bar{x}_{2}-\delta_{0}}{s_{p} \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}}$ (normally populations with the same variance, $n_{1}+n_{2}-2$ d.f.).

$$
s_{p}^{2}=\frac{\left(n_{1}-1\right) s_{1}^{2}+\left(n_{2}-1\right) s_{2}^{2}}{n_{1}+n_{2}-2}
$$

\mathbf{R} command: t.test (x, y, var.equal $=\mathrm{T}$)

- $t=\frac{\bar{x}_{1}-\bar{x}_{2}-\delta_{0}}{\sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}}}$ (normally populations with different variances, ν degrees of freedom)

$$
\nu \approx \frac{\left(\frac{s_{1}^{2}}{n_{2}}+\frac{s_{2}^{2}}{n_{2}}\right)^{2}}{\frac{\left(\frac{s_{1}^{2}}{n_{1}}\right)^{2}}{n_{1}-1}+\frac{\left(\frac{s_{2}^{2}}{n_{2}}\right)^{2}}{n_{2}-1}}
$$

\mathbf{R} command: t.test(x, y)
For tests about a population proportion $\left(H_{0}: \theta=\theta_{0}\right)$ we can use the sample proportion $\hat{\Theta}=X / n$ or the sample total $X=n \hat{\Theta}$ and the test statistics are:

- $x\left(X\right.$ is binomial with parameters n and $\left.\theta_{0}\right)$
\mathbf{R} command: binom.test $\left(\mathrm{x}, \mathrm{n}, \mathrm{p}=\theta_{0}\right)$
- $z=\frac{\hat{\theta}-\theta_{0}}{\sqrt{\frac{1}{n} \theta_{0}\left(1-\theta_{0}\right)}}=\frac{x-n \theta_{0}}{\sqrt{n \theta_{0}\left(1-\theta_{0}\right)}}$ (large samples, both $n \theta_{0} \geq 10$ and $n\left(1-\theta_{0}\right) \geq 10$)

For tests about the variance ($H_{0}: \sigma^{2}=\sigma_{0}^{2}$) the test statistic is :

- $\chi^{2}=\frac{(n-1) s^{2}}{\sigma_{0}^{2}}$ (chi-square distribution, $n-1$ degrees of freedom)

For tests about the ratio of two variances $\left(H_{0}: \frac{\sigma_{1}^{2}}{\sigma_{2}^{2}}=1\right)$ the test statistic is

- $\frac{s_{1}^{2}}{s_{2}^{2}}$ (F distribution with $n_{1}-1$ and $n_{2}-1$ degrees of freedom, order matters).
\mathbf{R} command: var.test (x, y)

C.4. Linear regression.

Model (Linear regression). $\mu_{Y \mid X=x}=\alpha_{1}+\beta_{1} x$ or $y=\alpha_{1}+\beta_{1} x+\epsilon$. For most regression analysis we require $\epsilon \sim N\left(0, \sigma_{\epsilon}^{2}\right)$.
Verify that the linear model is reasonable by looking at a plot of your data: > plot ($\mathrm{y} \sim \mathrm{x}$).
C.4.1. Regression statistics. Sample: $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)$. Many of the statistics are calculated by R: > model<-lm(y~x) and > summary (model) will be useful.

$$
\begin{array}{ll}
\bar{x}=\frac{1}{n} \sum x_{i} & \bar{y}=\frac{1}{n} \sum y_{i} \\
\hat{\alpha}_{1}=\bar{y}-\hat{\beta}_{1} \bar{x} & \hat{\beta}_{1}=\frac{S_{X Y}}{S_{X X}} \\
S_{X X}=\sum\left(x_{i}-\bar{x}\right)^{2} & S_{X Y}=\sum\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right) \\
\hat{y}_{i}=\hat{\alpha}_{1}+\hat{\beta}_{1} x_{i} & i^{\text {th }} \text { residual: } e_{i}=y_{i}-\hat{y}_{i} \\
S S T=S_{Y Y}=\sum\left(y_{i}-\bar{y}\right)^{2} & S S E=\sum\left[y_{i}-\left(\hat{\alpha}_{1}+\hat{\beta}_{1} x_{i}\right)\right]^{2}=\sum e_{i}^{2} \\
S S R=S S T-S S E=\sum\left(\hat{y}_{i}-\bar{y}\right)^{2} & s_{\epsilon}^{2}=\frac{S S E}{n-2}\left(\text { note: } s_{\epsilon} \text { is residual standard error }\right) \\
\text { Coefficient of determination } r^{2}=\frac{S S R}{S S T} & \text { Sample correlation } r=\frac{S_{X Y}}{\sqrt{S_{X X} S_{Y Y}}}= \pm \sqrt{r^{2}}
\end{array}
$$

C.4.2. Test statistics and confidence intervals. All assume $\epsilon \sim N\left(0, \sigma_{\epsilon}^{2}\right)$; you should check on this assumption before proceeding using the plots of residuals vs fitted values and normal Q-Q: > plot (model).
Test and interval concerning β_{1}. Hypothesis test $H_{0}: \beta_{1}=c$. Test stat: $t=\frac{\hat{\beta}_{1}-c}{\frac{s_{\epsilon}}{\sqrt{S_{X X}}}}$ has a t dist with $n-2$ df. R tests $H_{0}: \beta_{1}=0$ against $H_{0}: \beta_{1} \neq 0$ by default. $100(1-\alpha) \%$ confidence interval for β_{1} :

$$
\hat{\beta}_{1} \pm t_{1-\alpha / 2, n-2} \frac{s_{\epsilon}}{\sqrt{S_{X X}}}
$$

CI and PI for the regression line. $100(1-\alpha) \%$ confidence interval for $\mu_{Y \mid X=x}$:

$$
\left(\hat{\alpha}_{1}+\hat{\beta}_{1} x\right) \pm\left(t_{1-\alpha / 2, n-2}\right)\left(s_{\epsilon}\right) \sqrt{\frac{1}{n}+\frac{(x-\bar{x})^{2}}{S_{X X}}}
$$

$100(1-\alpha) \%$ prediction interval for Y given $X=x$:

$$
\left(\hat{\alpha}_{1}+\hat{\beta}_{1} x\right) \pm\left(t_{1-\alpha / 2, n-2}\right)\left(s_{\epsilon}\right) \sqrt{1+\frac{1}{n}+\frac{(x-\bar{x})^{2}}{S_{X X}}}
$$

D. Special Discrete Distributions

Definition. A random variable X has a discrete uniform distribution if it is equally likely to assume any one of a finite set of possible values.
Definition. A random variable X has a Bernoulli distribution with parameter θ (with $0<\theta<1$) if its probability mass function is

$$
m(x)= \begin{cases}1-\theta & \text { if } x=0 \\ \theta & \text { if } x=1\end{cases}
$$

The outcome 1 is often referred to as "success" while 0 is "failure" and the experiment is often called a Bernoulli trial.

Proposition. The mean and variance of a Bernoulli random variable are $\mu=\theta$ and Var $=\theta(1-\theta)$.
Definition. The total number of successes in n independent, identically distributed (iid) Bernoulli trials is a random variable with a Binomial distribution. The probability mass function of a random variable X having a binomial distribution with parameters n and θ is

$$
b(x)=\binom{n}{x} \theta^{x}(1-\theta)^{n-x} \text { for } x=0,1, \ldots, n
$$

Proposition. The mean and variance of a binomial distribution are $\mu=n \theta$ and $\operatorname{Var}=n \theta(1-\theta)$.
Definition. Let X_{1}, X_{2}, \ldots be a sequence of independent, identically distributed (iid) Bernoulli trials, all with probability of success θ. Let N be the trial on which the first success occurs. The random variable N is said to have a geometric distribution with parameter θ and its probability mass function is

$$
g(n)=\theta(1-\theta)^{n-1} \text { for } n=1,2,3, \ldots
$$

Proposition. The mean and variance of a geometric distribution are $\mu=\frac{1}{\theta}$ and $\operatorname{Var}=\frac{1}{\theta}\left(\frac{1}{\theta}-1\right)$.
Definition. A random variable with the probability mass function

$$
p(x)=\frac{\lambda^{x} e^{-\lambda}}{x!} \text { for } x=0,1,2, \ldots
$$

is said to have a Poisson distribution with parameter $\lambda>0$.
Proposition. The mean and variance of a Poisson distribution are $\mu=\lambda$ and $\operatorname{Var}=\lambda$.

E. Special Continuous Distributions

Definition. A random variable X with a uniform continuous distribution with parameters α and β (with $\alpha<\beta)$ has the following probability density function: $f(x)=\left\{\begin{array}{ll}\frac{1}{\beta-\alpha} & \text { if } \alpha<x<\beta \\ 0 & \text { elsewhere }\end{array}\right.$.
Proposition. A uniform continuous distribution with parameters α and β has mean $\mu=\frac{\alpha+\beta}{2}$, and variance $\sigma^{2}=\frac{(\beta-\alpha)^{2}}{12}$.
Definition. A random variable with an exponential distribution with parameter $\theta>0$ has the following probability density function: $g(x)= \begin{cases}\frac{1}{\theta} e^{-x / \theta} & \text { if } x>0 \\ 0 & \text { elsewhere }\end{cases}$
Proposition. An exponential distribution with parameter θ has mean $\mu=\theta$ and variance $\sigma^{2}=\theta^{2}$.
Definition. A random variable with a normal distribution with parameters μ and $\sigma>0$ has the following probability density function: $n(x ; \mu, \sigma)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}}$ for all $x \in \mathbb{R}$.
Proposition. A normal distribution with parameters μ and σ has mean $\mu=\mu$ and variance $\sigma^{2}=\sigma^{2}$.

