
MATH 321 COLLECTED FORMULAS

A. Probability

Method. The number of ways to select k elements from an n-element set is...

Order matters Order doesn’t matter

With replacement nk
(
n+ k − 1

k

)
Without replacement

n!

(n− k)!

(
n

k

)
=

n!

(n− k)!k!

Theorem. Properties of (all) probabilities:

(1) P (∅) = 0
(2) P (A) = 1− P

(
AC
)

(3) If A ⊆ B, then P (A) ≤ P (B)
(4) P (A ∪B) = P (A) + P (B)− P (A ∩B)

Definition. Let A and B be events with P (B) 6= 0. The conditional probability of A given B is

P (A|B) =
P (A ∩B)

P (B)

Definition. Events A and B are independent if and only if P (A ∩B) = P (A)P (B).

Theorem (Multiplication rule for probabilities). Let A and B be events with P (B) 6= 0. Then

P (A ∩B) = P (A|B)P (B)

Theorem (The Law of Total Probability). If event B has probability strictly between 0 and 1, then

P (A) = P (A|B)P (B) + P (A|BC)P (BC)

Theorem (Bayes’ Law). If A and B are events with positive probability, then

P (B|A) =
P (A|B)P (B)

P (A)

B. Random Variables

Definition. A random variable X assigns a number to each outcome in the sample space S.

(1) All random variables have a cumulative distribution function (CDF): F (x) = P (X ≤ x).
(2) A discrete random variable has a probability mass function (PMF): p(x) = P (X = x).
(3) A continuous random variable has a probability density function (PDF) f(x) such that for any

numbers a and b (with a ≤ b)

P (a ≤ X ≤ b) =

∫ b

a
f(x)dx

Definition. Expected value (or mean):

(1) If X is a discrete RV with PMF p(x), then µ = E(X) =
∑

x xp(x).
(2) If X is a continuous RV with PDF f(x), then µ = E(X) =

∫∞
−∞ xf(x)dx.

Definition. Variance: σ2 = Var(X) = E
[
(X − µ)2

]
= E(X2)− [E(X)]2. Standard deviation: σ =

√
σ2.

Theorem. For any random variable X and any constants a and b:

(1) E(aX + b) = aE(X) + b and
(2) Var(aX + b) = a2Var(X).

Theorem. If X1, X2, . . . Xn are independent, then

(1) E(X1 +X2 + · · ·+Xn) = E(X1) + E(X2) + · · ·+ E(Xn)
(2) Var(X1 +X2 + · · ·+Xn) = Var(X1) + Var(X2) + · · ·+ Var(Xn)
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C. Statistics

C.1. Sampling.

Definition. A random sample of size n is a set of independent identically distributed random variables
X1, X2, . . . Xn. Some sample statistics:

(1) The sample mean: X =
1

n

n∑
i=1

Xi

(2) The sample variance: S2 =
1

n− 1

n∑
i=1

(Xi −X)2

Theorem. For any random sample from a population with mean µ and variance σ2:

(1) E(X) = µ and Var(X) = σ2

n

(2) E(S2) = σ2

Definition. The sample standard error is
s√
n

Definition. A sample statistic X̂ is an unbiased estimator of population parameter ρ if E(X̂) = ρ.

Theorem. If X is a the mean of a random sample from a normally distribution population, then X is normally
distributed (with mean and variance given in the last theorem).

Theorem (Central Limit Theorem). If X is a the mean of a random sample from a population, then X is
approximately normally distributed (with mean and variance given in the theorem above).

C.2. Confidence (and prediction) intervals.

1. 100(1− α)% CI for µ (known σ): x± zα/2
σ√
n

2. 100(1− α)% CI for µ (large sample): x± zα/2
s√
n

3. 100(1− α)% CI for µ (normal population): x± tα/2,n−1
s√
n

4. 100(1− α)% prediction interval for µ (normal population): x± tα/2,n−1

√
s2(n+ 1)

n

5. 100(1− α)% CI for µ1 − µ2 (known σ1 and σ2, normal populations): x− y ± zα/2

√
σ21
n1

+
σ22
n2

6. 100(1− α)% CI for µ1 − µ2 (large samples): x− y ± zα/2

√
s21
n1

+
s22
n2

7. 100(1−α)% CI for µ1−µ2 (normal populations with the same variance): x− y± tα/2,n1+n2−2

√
s2p

(
1

n1
+

1

n2

)
s2p =

(n1 − 1)s21 + (n2 − 1)s22
n1 + n2 − 2

is the pooled estimator of the common variance

8. 100(1− α)% CI for µ1 − µ2 (normal populations with difference variances): x− y ± tα/2,ν

√
s21
n1

+
s22
n2

ν ≈

(
s21
n1

+
s22
n2

)2
(
s21
n1

)2

n1−1 +

(
s22
n2

)2

n2−1

(round down to the nearest integer)

9. Approximate 100(1− α)% CI for a proportion θ (large sample; x and n− x both large):

x

n
± zα/2

√
1

n

(x
n

)(
1− x

n

)



C.3. Test Statistics.
For tests about the mean (H0 : µ = µ0) test statistics are:

• z =
x− µ0

σ√
n

(known variance σ2, all sample sizes if the pop. is normal, otherwise just large samples)

• t =
x− µ0

s√
n

(samples from approximately normally distributed populations, n− 1 degrees of freedom)

R command: t.test(x)

For tests about the difference of two means (H0 : µ1 − µ2 = δ0) some test statistics are:

• z =
x1 − x2 − δ0√

σ2
1
n1

+
σ2
2
n2

(known variances, all sample sizes if pops are normal, otherwise just large samples)

• t =
x1 − x2 − δ0
sp

√
1
n1

+ 1
n2

(normally populations with the same variance, n1 + n2 − 2 d.f.).

s2p =
(n1 − 1)s21 + (n2 − 1)s22

n1 + n2 − 2
R command: t.test(x, y, var.equal = T)

• t =
x1 − x2 − δ0√

s21
n1

+
s22
n2

(normally populations with different variances, ν degrees of freedom)

ν ≈

(
s21
n2

+
s22
n2

)2
(
s21
n1

)2

n1−1 +

(
s22
n2

)2

n2−1
R command: t.test(x, y)

For tests about a population proportion (H0 : θ = θ0) we can use the sample proportion Θ̂ = X/n or the

sample total X = nΘ̂ and the test statistics are:

• x (X is binomial with parameters n and θ0)
R command : binom.test(x, n, p=θ0)

• z =
θ̂ − θ0√

1
nθ0(1− θ0)

=
x− nθ0√
nθ0(1− θ0)

(large samples, both nθ0 ≥ 10 and n(1− θ0) ≥ 10)

For tests about the variance (H0 : σ2 = σ20) the test statistic is :

• χ2 =
(n− 1)s2

σ20
(chi-square distribution, n− 1 degrees of freedom)

For tests about the ratio of two variances (H0 :
σ2
1

σ2
2

= 1) the test statistic is

• s21
s22

(F distribution with n1 − 1 and n2 − 1 degrees of freedom, order matters).

R command: var.test(x, y)



C.4. Linear regression.

Model (Linear regression). µY |X=x = α1 + β1x or y = α1 + β1x+ ε . For most regression analysis we require

ε ∼ N(0, σ2ε ).

Verify that the linear model is reasonable by looking at a plot of your data: > plot(y∼x).

C.4.1. Regression statistics. Sample: (x1, y1), (x2, y2), . . . , (xn, yn). Many of the statistics are calculated by R: >

model<-lm(y∼x) and > summary(model) will be useful.

x =
1

n

∑
xi y =

1

n

∑
yi

α̂1 = y − β̂1x β̂1 =
SXY
SXX

SXX =
∑

(xi − x)2 SXY =
∑

(xi − x)(yi − y)

ŷi = α̂1 + β̂1xi ith residual: ei = yi − ŷi

SST = SY Y =
∑

(yi − y)2 SSE =
∑[

yi − (α̂1 + β̂1xi)
]2

=
∑

e2i

SSR = SST − SSE =
∑

(ŷi − y)2 s2ε =
SSE

n− 2
(note: sε is residual standard error)

Coefficient of determination r2 =
SSR

SST
Sample correlation r =

SXY√
SXXSY Y

= ±
√
r2

C.4.2. Test statistics and confidence intervals. All assume ε ∼ N(0, σ2ε ); you should check on this assumption
before proceeding using the plots of residuals vs fitted values and normal Q-Q: > plot(model).

Test and interval concerning β1. Hypothesis test H0 : β1 = c. Test stat: t =
β̂1 − c
sε√
SXX

has a t dist with n− 2

df. R tests H0 : β1 = 0 against H0 : β1 6= 0 by default. 100(1− α)% confidence interval for β1:

β̂1 ± t1−α/2,n−2
sε√
SXX

CI and PI for the regression line. 100(1− α)% confidence interval for µY |X=x:

(α̂1 + β̂1x)± (t1−α/2,n−2)(sε)

√
1

n
+

(x− x)2

SXX

100(1− α)% prediction interval for Y given X = x:

(α̂1 + β̂1x)± (t1−α/2,n−2)(sε)

√
1 +

1

n
+

(x− x)2

SXX



D. Special Discrete Distributions

Definition. A random variable X has a discrete uniform distribution if it is equally likely to assume any
one of a finite set of possible values.

Definition. A random variable X has a Bernoulli distribution with parameter θ (with 0 < θ < 1) if its
probability mass function is

m(x) =

{
1− θ if x = 0

θ if x = 1

The outcome 1 is often referred to as “success” while 0 is “failure” and the experiment is often called a Bernoulli
trial.

Proposition. The mean and variance of a Bernoulli random variable are µ = θ and Var = θ(1− θ).

Definition. The total number of successes in n independent, identically distributed (iid) Bernoulli trials is a
random variable with a Binomial distribution. The probability mass function of a random variable X having
a binomial distribution with parameters n and θ is

b(x) =

(
n

x

)
θx(1− θ)n−x for x = 0, 1, . . . , n

Proposition. The mean and variance of a binomial distribution are µ = nθ and Var = nθ(1− θ).

Definition. Let X1, X2, . . . be a sequence of independent, identically distributed (iid) Bernoulli trials, all with
probability of success θ. Let N be the trial on which the first success occurs. The random variable N is said to
have a geometric distribution with parameter θ and its probability mass function is

g(n) = θ(1− θ)n−1 for n = 1, 2, 3, . . .

Proposition. The mean and variance of a geometric distribution are µ =
1

θ
and Var =

1

θ

(
1

θ
− 1

)
.

Definition. A random variable with the probability mass function

p(x) =
λxe−λ

x!
for x = 0, 1, 2, . . .

is said to have a Poisson distribution with parameter λ > 0.

Proposition. The mean and variance of a Poisson distribution are µ = λ and Var = λ.

E. Special Continuous Distributions

Definition. A random variable X with a uniform continuous distribution with parameters α and β (with

α < β) has the following probability density function: f(x) =

{
1

β−α if α < x < β

0 elsewhere
.

Proposition. A uniform continuous distribution with parameters α and β has mean µ = α+β
2 , and variance

σ2 = (β−α)2
12 .

Definition. A random variable with an exponential distribution with parameter θ > 0 has the following

probability density function: g(x) =

{
1
θe
−x/θ if x > 0

0 elsewhere

Proposition. An exponential distribution with parameter θ has mean µ = θ and variance σ2 = θ2.

Definition. A random variable with a normal distribution with parameters µ and σ > 0 has the following

probability density function: n(x;µ, σ) =
1

σ
√

2π
e−

1
2(x−µσ )

2

for all x ∈ R .

Proposition. A normal distribution with parameters µ and σ has mean µ = µ and variance σ2 = σ2.
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