Axioms of Probability. Axioms for probability:

1. $P(E) \geq 0$ for any event E
2. $P(S)=1$
3. If $E_{1}, E_{2}, E_{3}, \ldots$ are disjoint events, then $P\left(E_{1} \cup E_{2} \cup E_{3} \cup \ldots\right)=\sum_{i=1}^{\infty} P\left(E_{i}\right)$

Thoerem (Basic theorems of probability). Let A and B be events.

1. $P(\emptyset)=0$
2. If $A \subseteq B$, then $P(A) \leq P(B)$
3. $P(A)=1-P\left(A^{C}\right)$
4. $P(A)=P(A \cap B)+P\left(A \cap B^{C}\right)$
5. $P(A \cup B)=P(A)+P(B)-P(A \cap B)$

Method. The number of ways to select k elements from an n-element set is...

	Order matters	Order doesn't matter
With replacement	n^{k}	$\binom{n+k-1}{k}$
Without replacement	$\frac{n!}{(n-k)!}$	$\binom{n}{k}=\frac{n!}{(n-k)!k!}$

Definition. Let A and B be events with $P(B) \neq 0$. The conditional probability of A given B is

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}
$$

Definition. Events A and B are independent if and only if $P(A \cap B)=P(A) P(B)$.
Thoerem (Multiplication rule for probabilities). If $P(B) \neq 0$, then $P(A \cap B)=P(A \mid B) P(B)$.
Thoerem (The Law of Total Probability). If event B has probability strictly between 0 and 1 , then for any event $A, P(A)=P(A \mid B) P(B)+P\left(A \mid B^{C}\right) P\left(B^{C}\right)$.
Thoerem (Bayes' Law). If A and B are events with positive probability, then $P(B \mid A)=\frac{P(A \mid B) P(B)}{P(A)}$
Definition. A random variable X assigns a number to each outcome in the sample space S.

1. All random variables have a cumulative distribution function (CDF): $F(x)=P(X \leq x)$.
2. A discrete random variable has a probability mass function (PMF): $m(x)=P(X=x)$.

Definition. The total number of successes in n independent, identically distributed (iid) Bernoulli trials with parameter p is a random variable with a binomial distribution. The PMF of a random variable X having a binomial distribution with parameters n and p is $b(x)=\binom{n}{x} p^{x}(1-p)^{n-x}$ for $x=0,1, \ldots, n$
Proposition. The mean of a binomial distribution is $\mu=n p$.
Definition. Let X_{1}, X_{2}, \ldots be a sequence of independent, identically distributed (iid) Bernoulli trials, all with probability of success p. Let N be the trial on which the first success occurs. The random variable N is said to have a geometric distribution with parameter p and its PMF is $g(n)=p(1-p)^{n-1}$ for $n=1,2,3, \ldots$
Proposition. The mean of a geometric distribution is $\mu=\frac{1}{p}$.
Definition. Suppose n elements are to be selected without replacement from a population of size N of which k are successes. The number of successes selected is a hypergeometric random variable and its PMF is
$h(x)=\frac{\binom{k}{x}\binom{N-k}{n-x}}{\binom{N}{n}}$ for those integers x which make all terms positive.
Proposition. The mean of a hypergeometric distribution is $\mu=\frac{n k}{N}$.

