EXAM 2 FORMULAS

Definition. Let A and B be events with $P(B) \neq 0$. The conditional probability of A given B is

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

Definition. Events A and B are **independent** if and only if $P(A \cap B) = P(A)P(B)$.

Definition. A random variable X assigns a number to each outcome in the sample space S.

- (1) All random variables have a cumulative distribution function (CDF): $F(x) = P(X \le x)$.
- (2) A discrete random variable has a **probability mass function (PMF)**: m(x) = P(X = x).
- (3) A continuous random variable has a probability density function (PDF) f(x) such that for any numbers a and b (with a < b)

$$P(a \le X \le b) = \int_{a}^{b} f(x)dx$$

Theorem. The CDF of a random variable X satisfies the following:

- (1) it is non-decreasing: if $a \le b$, then $F(a) \le F(b)$
- (2) $\lim_{x\to-\infty} F(x) = 0$ and $\lim_{x\to\infty} F(x) = 1$

Theorem. The PMF of any discrete random variable X satisfies the following:

- (1) $0 \le p(x) \le 1$ for all x
- (2) $\sum_{x} p(x) = 1$ (where the sum is over all possible values of X)

Theorem. A PDF for a random variable satisfies the following:

(1)
$$f(x) \ge 0$$
 for all x
(2) $\int_{-\infty}^{\infty} f(x)dx = 1$

Definition. The **expected value** (or **mean**) of a random variable:

- (1) If X is a discrete RV with PMF m(x), then $E(X) = \sum_{x} x m(x)$. (2) If X is a continuous RV with PDF f(x), then $E(X) = \int_{-\infty}^{\infty} x f(x) dx$.

Definition. The variance of a random variable: $Var(X) = \sigma^2 = E[(X - \mu)^2] = E(x^2) - [E(X)]^2$.

Definition. The PMF of a random variable having a **binomial distribution** with parameters n and $p \text{ is } b(x) = \binom{n}{x} p^x (1-p)^{n-x} \text{ for } x = 0, 1, \dots, n$

Proposition. The mean of a binomial distribution is $\mu = np$ and the variance is $\sigma^2 = np(1-p)$.

Definition. The PMF of a random variable having a **geometric distribution** with parameter p is $g(n) = p(1-p)^{n-1}$ for n = 1, 2, 3, ...

Proposition. The mean of a geometric distribution is $\mu = \frac{1}{p}$ and the variance is $\sigma^2 = \frac{1-p}{p^2}$.

Definition. The PMF of a hypergeometric random variable is $h(x) = \frac{\binom{k}{x}\binom{N-k}{n-x}}{\binom{N}{x}}$

Proposition. The mean of a hypergeometric distribution is $\mu = \frac{nk}{N}$.

Definition. A random variable X with a uniform continuous distribution with parameters α and β (with $\alpha < \beta$) has the PDF: $f(x) = \frac{1}{\beta - \alpha}$ for $\alpha < x < \beta$.

Proposition. A uniform continuous distribution with parameters α and β has mean $\mu = \frac{\alpha + \beta}{2}$, and variance $\sigma^2 = \frac{(\beta - \alpha)^2}{12}$.

Definition. A random variable with an **exponential distribution** with parameter $\lambda > 0$ has the PDF: $g(x) = \lambda e^{-\lambda x}$ for x > 0 and the CDF $G(x) = 1 - e^{-\lambda x}$ for x > 0.

Proposition. An exponential distribution with parameter λ has mean $\mu = \frac{1}{\lambda}$ and variance $\sigma^2 = \frac{1}{\lambda^2}$.

Definition. A random variable with a **normal distribution** with parameters μ and $\sigma > 0$ has the PDF: $n(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$ for all $x \in \mathbb{R}$

Proposition. A normal distribution with parameters μ and σ has mean $\mu = \mu$ and variance $\sigma^2 = \sigma^2$.

Theorem. If $X \sim N(\mu, \sigma)$, then $Z = \frac{X - \mu}{\sigma}$ is a standard normal random variable.