PROBABILITY

The set of all outcomes for an experiment is called the sample space (usually S, but our book uses Ω). An event is a set of outcomes. The assignment of probabilities to events must obey the following rules:

Axioms of Probability. Axioms for probability:
(1) $P(E) \geq 0$ for any event E
(2) $P(S)=1$
(3) If $E_{1}, E_{2}, E_{3}, \ldots$ are disjoint events, then $P\left(E_{1} \cup E_{2} \cup E_{3} \cup \ldots\right)=\sum_{i=1}^{\infty} P\left(E_{i}\right)$

Theorem (Basic theorems of probability). Let A and B be events.
(1) $P(\emptyset)=0$
(2) If $A \subseteq B$, then $P(A) \leq P(B)$
(3) $P(A)=1-P\left(A^{C}\right)$
(4) $P(A)=P(A \cap B)+P\left(A \cap B^{C}\right)$
(5) $P(A \cup B)=P(A)+P(B)-P(A \cap B)$

Note that part 5 can be rearranged: $P(A \cap B)=P(A)+P(B)-P(A \cup B)$.
Theorem. If an experiment has N equally likely outcomes, then $P(E)=\frac{\text { number of outcomes in } E}{N}$.
This means that counting is one of our basic tools for calculating probabilities.
Method. (Multiplication rule for counting) If a process occurs in two steps and there are m options for the first step and n options for the second, then there are $m n$ total possibilities.

Method. The number of ways to select k elements from an n-element set is...

	Order matters	Order doesn't matter
With replacement	n^{k}	$\binom{n+k-1}{k}$
Without replacement	$\frac{n!}{(n-k)!}$	$\binom{n}{k}=\frac{n!}{(n-k)!k!}$

Definition. Let A and B be events with $P(B) \neq 0$. The conditional probability of A given B is

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}
$$

Definition. Events A and B are independent if and only if $P(A \cap B)=P(A) P(B)$.
Note that it follows that A and B are independent if $P(A \mid B)=P(A)$, that is, knowing that event B has occurred does not affect our calculation of $P(A)$.

Theorem (Multiplication rule for probabilities). Let A and B be events with $P(B) \neq 0$. Then

$$
P(A \cap B)=P(A \mid B) P(B)
$$

Theorem (The Law of Total Probability). If event B has probability strictly between 0 and 1 , then for any event $A, P(A)=P(A \mid B) P(B)+P\left(A \mid B^{C}\right) P\left(B^{C}\right)$.

Theorem (Bayes' Law). If A and B are events with positive probability, then

$$
P(B \mid A)=\frac{P(A \mid B) P(B)}{P(A)}
$$

Note: often the law of total probability is used to calculate $P(A)$.

Theorem (Extended multiplication rule for probabilities). Let $E_{1}, E_{2}, \ldots, E_{n}$ be events with $P\left(E_{i}\right) \neq 0$. Then

$$
P\left(E_{1} \cap E_{2} \cap \cdots \cap E_{n}\right)=P\left(E_{1}\right) P\left(E_{2} \mid E_{1}\right) P\left(E_{3} \mid E_{1} \cap E_{2}\right) \ldots P\left(E_{n} \mid E_{1} \cap E_{2} \cap \cdots \cap E_{n-1}\right)
$$

Definition. Events $E_{1}, E_{2}, \ldots, E_{2}$ form a partition of S if
(1) $E_{1} \cup E_{2} \cup \cdots \cup E_{2}=S$ and
(2) $E_{i} \cap E_{j}=\emptyset$ if $i \neq j$ (the events are pairwise disjoint).

Theorem (The Law of Total Probability Extended). If events $E_{1}, E_{2}, \ldots, E_{n}$ each have probability strictly between 0 and 1 and form a partition of S, then for any event A,

$$
P(A)=P\left(A \mid E_{1}\right) P\left(E_{1}\right)+P\left(A \mid E_{2}\right) P\left(E_{2}\right)+\cdots+P\left(A \mid E_{n}\right) P\left(E_{n}\right)
$$

Definition. A random variable X assigns a number to each outcome in the sample space S.
(1) All random variables have a cumulative distribution function (CDF): $F(x)=P(X \leq x)$.
(2) A discrete random variable has a probability mass function (PMF): $p(x)=P(X=x)$.

Example. Suppose you roll a fair 6 -sided die until the first 6 . Let X be the total number of rolls. Find the PMF of X.
Theorem. The CDF of any random variable satisfies the following:
(1) it is non-decreasing: if $a \leq b$, then $F(a) \leq F(b)$
(2) $\lim _{x \rightarrow-\infty} F(x)=0$ and $\lim _{x \rightarrow \infty} F(x)=1$
(3) If $a<b$, then $P(a<X \leq b)=F(b)-F(a)$

Theorem. The PMF of any random variable satisfies the following:
(1) $0 \leq p(x) \leq 1$ for all x
(2) $\sum_{x} p(x)=1$ (where the sum is over all possible values of X)

Definition. The expected value (or mean) of a random variable is a kind of weighted average and is denoted $E(X)$ or μ.
(1) If X is a discrete RV with PMF $p(x)$, then $E(X)=\sum_{x} x p(x)$.

