COUNTING AND PROBABILITY

Axioms of Probability. The assignment of probability to events in a sample space S must obey the following rules:
(1) $P(E) \geq 0$ for any event E
(2) $P(S)=1$
(3) If $E_{1}, E_{2}, E_{3}, \ldots$ are disjoint events, then $P\left(E_{1} \cup E_{2} \cup E_{3} \cup \ldots\right)=\sum_{i=1}^{\infty} P\left(E_{i}\right)$

Theorem. If S is a sample space consisting of N equally likely outcomes and E is an event consisting of m outcomes, then $P(E)=\frac{m}{N}$.

1. The experiment of flipping a coin twice has a sample space consisting of 4 equally likely outcomes: $S=\{H H, H T, T H, T T\}$. Let X be the number of heads in the two flips of the coin.
a) What set of outcomes corresponds to $X=0$?
b) What set of outcomes correspond to $X=1$?
c) What set of outcomes correspond to $X=2$?
d) Use the theorem to calculate $P(X=0), P(X=1)$, and $P(X=2)$.

The theorem tells us that (at least some of the time) we can calculate probabilities by counting. The mathematics of counting is called combinatorics (and is the subject of Chapter 3 of Grinstead \& Snell).
Method. (Multiplication rule for counting) If a process occurs in two steps and there are m options for the first step and n options for the second, then there are $m n$ total possibilities.
2. A PIN consists of four of the digits $0,1,2,3,4,5,6,7,8$, and 9 , each of which may be used multiple times (selection with replacement, order matters).
a) How many PINs start with 123 ?
b) How many PINs start with 12 ?
c) How many total PINs are there?
d) What is the probability that a randomly selected PIN starts with 123 ?
e) What is the probability that a randomly selected PIN starts with 12 ?
3. Continue working with 4-digit PINs, but now suppose that each digit can be used at most once.
a) In this situation, how many different PINs use just the digits $1,2,3$, and 4 (selection without replacement, order matters)?
b) Answer the same question, but with arbitrary digits d_{1}, d_{2}, d_{3}, and d_{4}.
c) How many different PINs are there if all the digits $0,1,2,3,4,5,6,7,8$, and 9 can be used (at most once)?
d) What is the probability that a randomly selected PIN in this scenario uses just the digits $1,2,3$, and 4 ?
e) How many different PINs are there if each digit can be used at most once and the order doesn't matter (selection without replacement, order doesn't matter)? Hint: in part B you calculated how many times different orderings of $d_{1} d_{2} d_{3} d_{4}$ appeared in your enumeration of PINs in part c. You can use these two numbers to answer this question.
4. We're now ready to analyze the Match 4 lottery in which four numbers are chosen from 1 to 24 without replacement and order doesn't matter.
a) How many possible outcomes are there?
b) How many do not match any of my chosen numbers 01020304 ?
c) How many match at least one of my chosen numbers?
d) How many match exactly one of my chosen numbers? Hint: think of this as a two-step process, with the first step being choosing one of my numbers to match.

