FUNCTIONS OF RANDOM VARIABLES

Video 1. Start with this example connecting statistics to probability

Theorem 1. Let g(x) be a continuous function and let X be a random variable.

- If X is a continuous RV with PDF f(x), then $E[g(X)] = \int_{-\infty}^{-\infty} g(x)f(x) dx$
- If X is a discrete RV with PMF f(x), then $E[g(X)] = \sum g(x)f(x)$

1. Let X be a continuous random variable with mean 50 and standard deviation 4. Calculate $E\left(\frac{X-50}{4}\right)$

and $\operatorname{Var}\left(\frac{X-50}{4}\right)$

Video 2. Once you're done or stuck, watch the lesson (in which the following theorem is proved).

Theorem 2. Let X be a random variable and let a and b be constants. Then E(aX + b) = aE(X) + band $Var(aX + b) = a^2 Var(X)$.

Theorem 3. Let $X_1, X_2, ..., X_n$ be any random variables. Then $E(X_1 + X_1 + ... + X_n) = E(X_1) + E(X_2) + ... + E(X_n)$.

Theorem 4. Let X_1, X_2, \ldots, X_n be independent random variables. Then $Var(X_1 + X_2 + \cdots + X_n) = Var(X_1) + Var(X_2) + \cdots + Var(X_n)$.

Definition. We say that the random variables X_1, X_2, \ldots, X_n are a **random sample** if they are independent and identically distributed. The **sample size** is *n*. Their common distribution is called the **population distribution**. Some **sample statistics**:

(1) The sample total: $T = \sum_{i=1}^{n} X_i$

(2) The sample mean:
$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

(3) The sample variance: $S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2$

$$n-1 \stackrel{}{\underset{i=1}{\overset{}{\underset{i=1}{\overset{}{\atop}}}}$$

Our goal is to understand the distributions of these sample statistics.

2. Let X_1, X_2, \ldots, X_n be a random sample from a population with mean μ and variance σ^2 . Calculate the expected value and variance of the sample mean (that is, $E(\overline{X})$ and $Var(\overline{X})$).

Date: March 9, 2020.

Video 3. Watch the next video.

Theorem 5 (Central Limit Theorem). If X_1, X_2, \ldots, X_n comprise a random sample from a population with mean μ and variance σ^2 , then the limiting distribution (as $n \to \infty$) of $\frac{X-\mu}{\sigma/\sqrt{n}}$ is a standard normal distribution.

3. Continuing with the spoke example from the video, suppose another kind of spoke has a mean mass of 7.5g with a standard deviation of 0.6g. These spokes are stronger, so you only need to use 32 per wheel.

- a) On average, which spokes make a lighter wheel (these or the spokes in the video)?
- b) What is the probability that the total mass of the spokes in a wheel exceeds 245g if you use these spokes?

4. Suppose you roll a die 64 times. Use the CLT to estimate the probability that the sum of all the rolls is at least 200. Hint: think of this as a random sample of size 64 from an underlying population with the mean and variance of a single roll of the die (you may need to calculate this mean and variance).

5. If the underlying population is normally distributed, then $\frac{\overline{X} - \mu}{\sigma/\sqrt{n}}$ is a standard normal random variable (not just approximately standard normal), so our calculations are the same, but our answers are exact and all sample sizes work. Suppose we have a normally distributed population with mean 100 and standard deviation 10. Let \overline{X} be the mean of a random sample of size n. Calculate $P(98 < \overline{X} < 102)$ for each sample size.

- a) n = 1
- b) n = 25
- c) n = 100
- d) n = 10000

6. As in the coronavirus example, binomial distributions show up when we count the number of successes in a random sample. For example, suppose you roll a die 64 times. Let T be the number of sixes you roll.

- a) What is the (exact) distribution of T?
- b) Calculate P(T > 12).
- c) The CLT says that T is approximately normal with mean 64(1/6) and variance 64(1/6)(5/6). Use this normal approximation to estimate $P(T \ge 12)$. How does this answer compare with the exact answer (in part b)?