FUNCTIONS OF RANDOM VARIABLES

Video 1. Start with this example connecting statistics to probability
Theorem 1. Let $g(x)$ be a continuous function and let X be a random variable.

- If X is a continuous $R V$ with PDF $f(x)$, then $E[g(X)]=\int_{-\infty}^{-\infty} g(x) f(x) d x$
- If X is a discrete $R V$ with PMF $f(x)$, then $E[g(X)]=\sum_{x} g(x) f(x)$

1. Let X be a continuous random variable with mean 50 and standard deviation 4. Calculate $E\left(\frac{X-50}{4}\right)$ and $\operatorname{Var}\left(\frac{X-50}{4}\right)$

Video 2. Once you're done or stuck, watch the lesson (in which the following theorem is proved).
Theorem 2. Let X be a random variable and let a and b be constants. Then $E(a X+b)=a E(X)+b$ and $\operatorname{Var}(a X+b)=a^{2} \operatorname{Var}(X)$.
Theorem 3. Let $X_{1}, X_{2}, \ldots, X_{n}$ be any random variables. Then $E\left(X_{1}+X_{1}+\cdots+X_{n}\right)=E\left(X_{1}\right)+$ $E\left(X_{2}\right)+\cdots+E\left(X_{n}\right)$.
Theorem 4. Let $X_{1}, X_{2}, \ldots, X_{n}$ be independent random variables. Then $\operatorname{Var}\left(X_{1}+X_{2}+\cdots+X_{n}\right)=$ $\operatorname{Var}\left(X_{1}\right)+\operatorname{Var}\left(X_{2}\right)+\cdots+\operatorname{Var}\left(X_{n}\right)$.
Definition. We say that the random variables $X_{1}, X_{2}, \ldots, X_{n}$ are a random sample if they are independent and identically distributed. The sample size is n. Their common distribution is called the population distribution. Some sample statistics:
(1) The sample total: $T=\sum_{i=1}^{n} X_{i}$
(2) The sample mean: $\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$
(3) The sample variance: $S^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}$

Our goal is to understand the distributions of these sample statistics.
2. Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample from a population with mean μ and variance σ^{2}. Calculate the expected value and variance of the sample mean (that is, $E(\bar{X})$ and $\operatorname{Var}(\bar{X}))$.

Video 3. Watch the next video,
Theorem 5 (Central Limit Theorem). If $X_{1}, X_{2}, \ldots, X_{n}$ comprise a random sample from a population with mean μ and variance σ^{2}, then the limiting distribution (as $n \rightarrow \infty$) of $\frac{\bar{X}-\mu}{\sigma / \sqrt{n}}$ is a standard normal distribution.
3. Continuing with the spoke example from the video, suppose another kind of spoke has a mean mass of 7.5 g with a standard deviation of 0.6 g . These spokes are stronger, so you only need to use 32 per wheel.
a) On average, which spokes make a lighter wheel (these or the spokes in the video)?
b) What is the probability that the total mass of the spokes in a wheel exceeds 245 g if you use these spokes?
4. Suppose you roll a die 64 times. Use the CLT to estimate the probability that the sum of all the rolls is at least 200. Hint: think of this as a random sample of size 64 from an underlying population with the mean and variance of a single roll of the die (you may need to calculate this mean and variance).
5. If the underlying population is normally distributed, then $\frac{\bar{X}-\mu}{\sigma / \sqrt{n}}$ is a standard normal random variable (not just approximately standard normal), so our calculations are the same, but our answers are exact and all sample sizes work. Suppose we have a normally distributed population with mean 100 and standard deviation 10. Let \bar{X} be the mean of a random sample of size n. Calculate $P(98<\bar{X}<102)$ for each sample size.
a) $n=1$
b) $n=25$
c) $n=100$
d) $n=10000$
6. As in the coronavirus example, binomial distributions show up when we count the number of successes in a random sample. For example, suppose you roll a die 64 times. Let T be the number of sixes you roll.
a) What is the (exact) distribution of T ?
b) Calculate $P(T \geq 12)$.
c) The CLT says that T is approximately normal with mean $64(1 / 6)$ and variance $64(1 / 6)(5 / 6)$. Use this normal approximation to estimate $P(T \geq 12)$. How does this answer compare with the exact answer (in part b)?

