CONFIDENCE INTERVALS

Video 1. Watch the introduction to interval estimation.
A. Let Z be a standard normal random variable. Find a number z such that $P(-z<Z<z)=0.95$. You may want to use the R command qnorm(.)
B. Let \bar{X} be the mean of a random sample of size 100 from a population with mean μ and standard deviation $\sigma=2$ (note that this is the population standard deviation, not the standard deviation of \bar{X}). Substitute $Z=\frac{\bar{X}-\mu}{\sigma / \sqrt{n}}$ into the expression in part A, then isolate μ to fill in the blanks:

$$
P(\bar{X}-\ldots<\mu<\bar{X}+\ldots \quad)=0.95
$$

C. Samples are taken and you find $\bar{x}=7.767203$. Substitute this value in for \bar{X} in part C to find the $\mathbf{9 5 \%}$ confidence interval for the population mean μ.
D. What's wrong with the expression $P(7.375203<\mu<8.159203)=0.95$?
E. Your 95% confidence interval is actually just the interval $(7.375203,8.159203)$. What do these numbers mean? Try to give a non-technical explanation of the significance of this confidence interval.

Definition. If \bar{X} is the mean of a random sample of size n (with n large) from a population with mean μ and standard deviation σ, then the $100(1-\alpha) \%$ confidence interval for μ is $\bar{x} \pm z_{\alpha / 2} \frac{\sigma}{\sqrt{n}}$. Here $z_{\alpha / 2}$ is the z-critical value: $P\left(Z>z_{\alpha / 2}\right)=\alpha / 2$ and can be found using the \mathbf{R} command qnorm ($1-\alpha / 2$).

1. A random sample of 139 male house sparrows yields a sample mean blood plasma level (in $\mathrm{pg} / \mathrm{ml}$) of 209.46 and with a standard error of 16.62 (note that this is the standard error, not standard deviation). Calculate 95% and 99% confidence intervals for the true mean plasma level of male house sparrows.
