CONFIDENCE INTERVALS II

Our first $100(1-\alpha)\%$ CIs for the population mean μ come from the equation

$$P\left(-z_{\alpha/2} < Z < z_{\alpha/2}\right) = 1 - \alpha$$

Because $Z = \frac{X - \mu}{\sigma / \sqrt{n}}$ is approximately standard normal for large samples (or exactly standard normal for samples of any size from a normally distributed population), we can substitute this in and isolate μ to get the $100(1-\alpha)\%$ confidence interval: $|\overline{x} \pm z_{\alpha/2} \frac{\sigma}{\sqrt{n}}|$

Video 1. Watch the first video for a more detailed recap.

Other substitutions are possible and each gives a different confidence interval. The following are all standard normal normal (or approximately standard normal for large n).

- a) $Z = \frac{X \mu}{\sigma / \sqrt{n}}$ (known variance σ^2 ; approximate unless the population is normally distributed)
- b) $Z = \frac{\overline{X} \mu}{S/\sqrt{n}}$ (always approximate, use only for large samples)
- c) $Z = \frac{\overline{X}_1 \overline{X}_2 (\mu_1 \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$ (independent samples from populations with known variances σ_1^2 and σ_2^2 ;

approximate unless both populations are normally distributed)

d) $Z = \frac{\overline{X}_1 - \overline{X}_2 - (\mu_1 - \mu_2)}{\sqrt{\frac{S_1^2}{n} + \frac{S_2^2}{n}}}$ (independent samples; always approximate, use only for large samples)

Isolating μ (or $\mu_1 - \mu_2$) in the middle of the inequality gives a confidence interval for μ (or $\mu_1 - \mu_2$).

- 1. Find the formula for a $100(1-\alpha)\%$ confidence interval for μ (or $\mu_1-\mu_2$) based on each possible substitution above:
- a) $100(1-\alpha)\%$ CI for μ (known σ): $\overline{x} \pm z_{\alpha/2} \frac{\delta}{\sqrt{n}}$
- b) $100(1-\alpha)\%$ CI for μ (large sample): $\overline{x} \pm z_{\alpha/2} \frac{s}{\sqrt{n}}$
- c) $100(1-\alpha)\%$ CI for $\mu_1 \mu_2$ (known σ_1 and σ_2 , normal populations or large samples):

$$\overline{x}_1 - \overline{x}_2 \pm z_{\alpha/2} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$$

d) $100(1-\alpha)\%$ CI for $\mu_1 - \mu_2$ (large samples): $\overline{x}_1 - \overline{x}_2 \pm z_{\alpha/2} \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$

Date: March 23, 2020.

- 2. This problem deals with the US Census bureau's 2017 American Community Survey (ACS). The survey reports mean income along with a standard error; the standard error in this case is the estimate $\frac{s}{\sqrt{n}}$.
- a) The survey included 19,427 households in the Pacific West; these households had a mean income of \$101,716 with a standard error of \$1,584. Calculate a 99% confidence interval for the true mean income of a household in the Pacific West.

Solution: $101716 \pm 2.5758(1584)$ giving and interval of (97635.89, 105796.10).

b) The survey also included 9,669 Mountain West households; these households had a mean income of \$88,739 with a standard error of \$1,746. Calculate a 99% confidence interval for the difference between the mean household incomes of these regions.

Solution: Order of the difference doesn't matter. $(101716 - 88739) \pm 2.5758\sqrt{(1584)^2 + (1746)^2}$ giving an interval of (6904.61, 19049.39).

Video 2. Watch the video on confidence intervals for proportions.

A special case arises when dealing with estimating the proportion of a population with a certain property or characteristic. In this case the population has a Bernoulli distribution with parameter θ , the true proportion with the property. Now we can use $Z = \frac{\overline{X} - \theta}{\sqrt{\frac{\overline{X}(1-\overline{X})}{n}}}$, which is approximately standard normal (as long as both $n\overline{x}$ and $n(1-\overline{x})$ are both at least 10). This gives us the approximate $100(1-\alpha)\%$ CI:

$$\boxed{\overline{x} \pm z_{\alpha/2} \sqrt{\frac{\overline{x}(1-\overline{x})}{n}}}$$

- 3. As 2014 Pew Center study on religion in America surveyed a total of 35,071 Americans. Of those, 714 lived in Washington state. Of those living in Washington, 121 said they were Catholic.
- a) Calculate a 98% confidence interval for the proportion of Americans who live in Washington.

Solution:

$$\frac{714}{35071} \pm 2.326348\sqrt{\frac{\left(\frac{714}{35071}\right)\left(\frac{34357}{35071}\right)}{35071}} = (0.0186, 0.0221)$$

b) Calculate a 98% confidence interval for the proportion of Washingtonians who are Catholic.

$$\frac{121}{714} \pm 2.326348\sqrt{\frac{\left(\frac{121}{714}\right)\left(\frac{593}{714}\right)}{714}} = (0.1368, 0.2021)$$

Video 3. Watch the video on confidence intervals based on Student's t distribution.

Let T be a random variable having Student's t distribution with ν degrees of freedom. As above, substitution into the expression

$$P\left(-t_{\alpha/2,\nu} < T < t_{\alpha/2,\nu}\right) = 1 - \alpha$$

leads to the confidence intervals for μ (or $\mu_1 - \mu_2$) provided you have samples from normally distributed populations:

- a) $100(1-\alpha)\%$ CI for μ (normal population, all sample sizes): $\overline{x} \pm t_{\alpha/2,n-1} \frac{s}{\sqrt{n}}$
- b) $100(1-\alpha)\%$ CI for $\mu_1-\mu_2$ (normal populations with a common variance):

$$\overline{x} - \overline{y} \pm t_{\alpha/2, n_1 + n_2 - 2} \sqrt{s_p^2 \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}$$

where $s_p^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}$ is the pooled estimator for the common variance.

c)
$$100(1-\alpha)\%$$
 CI for $\mu_1 - \mu_2$ (normal populations with difference variances): $\overline{x} - \overline{y} \pm t_{\alpha/2,\nu} \sqrt{\frac{s_1^2}{m} + \frac{s_1^2}{n}}$ where $\nu \approx \frac{\left(\frac{s_1^2}{m} + \frac{s_1^2}{n}\right)^2}{\frac{\left(\frac{s_1^2}{m}\right)^2}{m-1} + \frac{\left(\frac{s_1^2}{n}\right)^2}{n-1}}$ (round down to the nearest integer)

4. In a random sample of 16 games in 2016, the Gonzaga men's basketball team had an average score of $\overline{x} = 81.8750$ with a sample standard deviation of s = 10.7881. Calculate a 95% confidence interval for the mean score (assuming that scores are normally distributed).

Solution: Use a t-distribution with 15 degrees of freedom. $81.8750 \pm 2.13145 \left(\frac{10.7881}{4} \right)$

5. In a random sample of 9 games in 2019, the men's basketball team had a mean score of 88.4444 with a sample standard deviation of 8.7050. Calculate a 95% confidence interval for the difference between the mean scores in 2016 and 2019. (Assume that scores for both years are normally distributed with the same variance).

Solution: Use the formulas in item (b) above. Order doesn't matter. Use a t-distribution with 23 degrees of freedom and $s_p^2 = 102.2592$.

$$88.4444 - 81.8750 \pm 2.068658 \sqrt{102.2592 \left(\frac{1}{9} + \frac{1}{16}\right)} = (-2.14683, 15.28563)$$

6. Suppose that we want to predict Gonzaga's score in the next game (instead of producing confidence intervals for mean scores). This means that we should use a $100(1-\alpha)\%$ prediction interval:

$$\overline{x} \pm t_{\alpha/2, n-1} \sqrt{\frac{s^2(n+1)}{n}}$$

Use this formula to calculate a 95% prediction interval for the next score in 2019.

Solution:
$$88.4444 \pm 2.306004(8.7050)\sqrt{1 + \frac{1}{16}} = (67.753, 109.136)$$