NAME:	SCORE:

Instructions: Solve $n-1$ the following n problems and write your solutions in the space provided (or on additional paper, which is available at the front of the room). You must choose a problem to skip: clearly mark that problem by writing SKIP or Xing out the space for that problem. All solutions should include a clear method or argument and should use English words and sentences when appropriate. Clear and comprehensible solutions will generally earn more points than those that are hard to understand; a correct solution without supporting work may receive little or no credit. You may use a calculator, but phones and all other devices are forbidden. Answers may (and sometimes should) be left unsimplified.

Thoerem (Bayes' law). If A and B are events with positive probability, then $P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)}$
Thoerem (LoTP). If A and B are events and $0<P(A)<1$, then $P(B)=P(B \mid A) P(A)+P\left(B \mid A^{C}\right) P\left(A^{C}\right)$
Definition. The expected value (or mean) of a discrete random variable X with possible values $x_{a}, x_{2}, x_{3}, \ldots$ is $E(X)=\mu=\sum_{i} x_{i} P\left(X=x_{i}\right)$. The variance of X is $\operatorname{var}(X)=\sigma^{2}=E\left[(X-\mu)^{2}\right]$.

Definition. The total number of successes in n independent, identically distributed (iid) Bernoulli trials with parameter p is a random variable with a binomial distribution. The PMF of a random variable X having a binomial distribution with parameters n and p is

$$
P(X=x)=\binom{n}{x} p^{x}(1-p)^{n-x} \text { for } x=0,1, \ldots, n
$$

The \mathbf{R} syntax for the CDF is $P(X \leq x)=\operatorname{pbinom}(\mathrm{x}, \mathrm{n}, \mathrm{p})$.
Proposition. The mean of a binomial distribution is $\mu=n p$ and the variance is $\sigma^{2}=n p(1-p)$.
Definition. The number of trials until the first success in a sequence of independent, identically distributed (iid) Bernoulli trials with probability of success p is a random variable with a geometric distribution. The PMF of a random variable X having a geometric distribution with parameter p is

$$
P(X=x)=p(1-p)^{x-1} \text { for } x=1,2,3, \ldots
$$

The CDF is $P(X \leq x)=1-(1-p)^{x}$ for $x=1,2,3, \ldots$.
Proposition. The mean of a geometric distribution is $\mu=\frac{1}{p}$ and the variance is $\sigma^{2}=\frac{1-p}{p^{2}}$.
Definition. Suppose a sample of size n is to be selected without replacement from a population of size $M_{1}+M_{2}$ consisting of M_{1} are successes and M_{2} failures and the order of selection doesn't matter. When $n \leq M_{1}$, the number of successes selected is a hypergeometric random variable and its PMF is

$$
P(X=x)=\frac{\binom{M_{1}}{x}\binom{M_{2}}{n-x}}{\binom{M_{1}+M_{2}}{n}}
$$

The \mathbf{R} syntax for the CDF is $P(X \leq x)=\operatorname{phyper}\left(\mathrm{x}, \mathrm{M}_{1}, \mathrm{M}_{2}, \mathrm{n}\right)$.
Proposition. The mean of a hypergeometric distribution is $\mu=n\left(\frac{M_{1}}{M_{1}+M_{2}}\right)$ and the variance is $\sigma^{2}=n\left(\frac{M_{1}}{M_{1}+M_{2}}\right)\left(\frac{M_{2}}{M_{1}+M_{2}}\right)\left(\frac{M_{1}+M_{2}-n}{M_{!}+M_{2}-1}\right)$.

