PROBABILITY AND DISCRETE DISTRIBUTIONS

Definition. The set of all outcomes for an experiment is called the sample space (usually S, but some authors use Ω). An event is a set of outcomes. The assignment of probabilities to events must obey the following rules:

Axioms of Probability.

1. $P(S)=1$
2. $P(E) \geq 0$ for any event E
3. If $E_{1}, E_{2}, E_{3}, \ldots$ are disjoint events, then $P\left(E_{1} \cup E_{2} \cup E_{3} \cup \ldots\right)=\sum_{i=1}^{\infty} P\left(E_{i}\right)$

Theorem (Basic theorems of probability). Let A and B be events.

1. $P(\emptyset)=0$
2. If $A \subseteq B$, then $P(A) \leq P(B)$
3. $P(A)=1-P\left(A^{C}\right)$
4. $P(A)=P(A \cap B)+P\left(A \cap B^{C}\right)$
5. $P(A \cup B)=P(A)+P(B)-P(A \cap B)$
6. $P(A \cap B)=P(B \mid A) P(A)$

Theorem. If an experiment has N equally likely outcomes, then $P(E)=\frac{\text { number of outcomes in } E}{N}$
Method. (Multiplication rule for counting) If a process occurs in two steps and there are m options for the first step and n options for the second, then there are $m n$ total possibilities.

Method. The number of ways to select k elements from an n-element set is...

	Order matters	Order doesn't matter
With replacement	n^{k}	$\binom{n+k-1}{k}$
Without replacement	$\frac{n!}{(n-k)!}$	$\binom{n}{k}=\frac{n!}{(n-k)!k!}$

Note. The number of combinations (bottom right corner) $\binom{n}{k}=\frac{n!}{(n-k)!k!}$ is implemented in \mathbf{R} as choose (n, k). It is implemented in most calculators as nCk or $\mathrm{C}(\mathrm{n}, \mathrm{k})$. The number of permutations (bottom left corner) $\frac{n!}{(n-k)!}$ is implemented in most calculators as nPk or $\mathrm{P}(\mathrm{n}, \mathrm{k})$.
Definition. Let A and B be events with $P(A) \neq 0$. The conditional probability of B given A is

$$
P(B \mid A)=\frac{P(A \cap B)}{P(A)}
$$

Definition. Events A and B are independent if and only if $P(A \cap B)=P(A) P(B)$.
Note that if $P(B \mid A)=P(B)$, then A and B are independent. In other words, if knowing that event A has occurred does not affect our calculation of $P(B)$, then A and B are independent.

Theorem (The Law of Total Probability). If event A has probability strictly between 0 and 1 , then for any event B,

$$
P(B)=P(B \mid A) P(A)+P\left(B \mid A^{C}\right) P\left(A^{C}\right)
$$

Date: February 12, 2024.

Theorem (Bayes' Law). If A and B are events with positive probability, then

$$
P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)}
$$

Note: the law of total probability is very often used to calculate $P(B)$.
Example. Suppose 0.01% of a population carry a genetic disease (and have no obvious symptoms). Doctors screen for the disease using a test that correctly identifies carriers 99.9% of the time. The test also gives false positives 0.2% of the time. What is the probability that a random person who tests positive actually carries the disease?

Example. There are two taxi companies in Extremistan: Crimson Cab (which has 80% of the cars) and Tangerine Taxi (which owns the remaining 20\%). A taxi from one of these companies sideswiped some parked cars. An eyewitness claims to have seen a Tangerine Taxi, but given the conditions (dusk) and distance (1 block) the eyewitness is considered to be only 75% reliable. Should Tangerine Taxi be found liable?

Definition. A random variable X assigns a number to each outcome in the sample space S.

1. All random variables have a cumulative distribution function (CDF) defined for all real numbers: $F(x)=P(X \leq x)$.
2. If X is a discrete random variable with possible values $x_{1}, x_{2}, x_{3}, \ldots$, then X has a probability mass function (PMF): $p\left(x_{i}\right)=P\left(X=x_{i}\right)$.
Theorem. The PMF of any (discrete) random variable with possible values $x_{1}, x_{2}, x_{3}, \ldots$ has the following properties:
3. $0 \leq p\left(x_{i}\right) \leq 1$
4. $\sum_{i} p\left(x_{i}\right)=1$

Theorem. The CDF of any random variable has the following properties:

1. Non-decreasing: if $a \leq b$, then $F(a) \leq F(b)$
2. $\lim _{x \rightarrow-\infty} F(x)=0$ and $\lim _{x \rightarrow \infty} F(x)=1$
3. If $a<b$, then $P(a<X \leq b)=F(b)-F(a)$

Definition. The expected value (or mean) of a random variable is a weighted average and is denoted $E(X)$ or μ_{X}. If X is a discrete RV with possible values $x_{1}, x_{2}, x_{3}, \ldots$, then

$$
E(X)=\sum_{i} x_{i} P\left(X=x_{i}\right)
$$

Definition. The variance of a random variable is denoted $\operatorname{Var}(X)$ or σ_{X}^{2}. If X is a discrete RV with possible values $x_{1}, x_{2}, x_{3}, \ldots$, then

$$
\operatorname{Var}(X)=\sum_{i}\left(x_{i}-\mu_{X}\right)^{2} P\left(X=x_{i}\right)
$$

Definition. The standard deviation of a random variable is $\sigma=\sqrt{\operatorname{Var}(X)}$.

Definition. A random variable X has a Bernoulli distribution with parameter p (with $0<p<1$) if X has possible values 0 and 1 with $P(X=1)=p$ and $P(X=0)=1-p$. The outcome 1 is often referred to as "success" while 0 is "failure" and the experiment is often called a Bernoulli trial.
Proposition. The mean and variance of a Bernoulli random variable are $\mu=p$ and $\sigma^{2}=p(1-p)$.
Definition. The total number of successes in n independent, identically distributed (iid) Bernoulli trials with parameter p is a random variable with a binomial distribution. The PMF of a random variable X having a binomial distribution with parameters n and p is

$$
P(X=x)=\binom{n}{x} p^{x}(1-p)^{n-x} \text { for } x=0,1, \ldots, n
$$

\mathbf{R} syntax. If $X \sim \operatorname{binom}(n, p)$, then the PMF is dbinom(x, $n, \mathrm{p})$ and the CDF is pbinom(x, n , p).

Theorem. The mean and variance of a binomial distribution are $\mu=n p$ and $\sigma^{2}=n p(1-p)$.
Definition. If independent, identically distributed Bernoulli trials with parameter p are repeated until the first success, then the total number of trials (counting the success) has a geometric distribution. The PMF of a random variable X having a geometric distribution with parameter p is

$$
P(X=x)=(1-p)^{x-1} p \text { for } x=1,2,3, \ldots
$$

and the CDF is

$$
P(X \leq x)=1-(1-p)^{x} \text { for } x=1,2,3, \ldots
$$

R syntax. If $X \sim \operatorname{geom}(p)$, then the PMF is dgeom (x, p) and the CDF is pgeom (x, p).
Theorem. The mean and variance of a geometric distribution are $\mu=\frac{1}{p}$ and $\sigma^{2}=\frac{1-p}{p^{2}}$.
Definition. Suppose n elements are to be selected without replacement from a population of size $M_{1}+M_{2}$ consisting of M_{1} successes and M_{2} failures and the order of selection doesn't matter. If $n \leq M_{1}$, then the number of successes selected is a hypergeometric random variable and its PMF is

$$
P(X=x)=\frac{\binom{M_{1}}{x}\binom{M_{2}}{n-x}}{\binom{M_{1}+M_{2}}{n}} \text { for } x=0,1,2, \ldots, n
$$

Proposition. The mean and variance of a hypergeometric distribution are $\mu=n\left(\frac{M_{1}}{M_{1}+M_{2}}\right)$ and $\sigma^{2}=n\left(\frac{M_{1}}{M_{1}+M_{2}}\right)\left(\frac{M_{2}}{M_{1}+M_{2}}\right)\left(\frac{M_{1}+M_{2}-n}{M_{1}+M_{2}-1}\right)$.
\mathbf{R} syntax. If $X \sim \operatorname{hyper}\left(M_{1}, M_{2}, n\right)$, then the PMF is dhyper (x, $\mathrm{M}_{1}, \mathrm{M}_{2}, \mathrm{n}$) and the CDF is $\operatorname{phyper}\left(\mathrm{x}, \mathrm{M}_{1}, \mathrm{M}_{2}, \mathrm{n}\right)$.
Definition. A Poisson random variable with parameter $\lambda>0$ has the PMF

$$
P(X=x)=\frac{\lambda^{x} e^{-\lambda}}{x!} \text { for } x=0,1,2, \ldots
$$

Proposition. The mean and variance of a Poisson distribution are $\mu=\lambda$ and $\sigma^{2}=\lambda$.
\mathbf{R} syntax. If $X \sim \operatorname{pois}(\lambda)$, then the PMF is dpois (x, λ) and the CDF is ppois (x, λ).

