EXAM 2 FORMULAS

Formulas in gray will not be provided: memorize these.
Theorem. For any random variable X and any constants a and b :

1. $E(a X+b)=a E(X)+b$ and
2. $\operatorname{Var}(a X+b)=a^{2} \operatorname{Var}(X)$.

Theorem. Let $X_{1}, X_{2}, \ldots, X_{n}$ be any random variables. Then $E\left(X_{1}+X_{1}+\cdots+X_{n}\right)=E\left(X_{1}\right)+E\left(X_{2}\right)+$ $\cdots+E\left(X_{n}\right)$.

Theorem. Let $X_{1}, X_{2}, \ldots, X_{n}$ be independent random variables. Then $\operatorname{Var}\left(X_{1}+X_{2}+\cdots+X_{n}\right)=\operatorname{Var}\left(X_{1}\right)+$ $\operatorname{Var}\left(X_{2}\right)+\cdots+\operatorname{Var}\left(X_{n}\right)$.

Theorem (Propagation of error formula). If X is a random variable with mean μ_{X} and standard deviation σ_{X} and $g(x)$ is a differentiable function, then

1. $E[g(X)] \approx g\left(\mu_{X}\right)$
2. $\operatorname{Var}[g(X)] \approx\left[g^{\prime}\left(\mu_{X}\right) \sigma_{X}\right]^{2}$

Definition. A random sample of size n is a set of independent identically distributed (iid) random variables $X_{1}, X_{2}, \ldots X_{n}$. Some sample statistics:

1. The sample total $T=\sum_{i=1}^{n} X_{i}$
2. The sample mean: $\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$
3. The sample variance: $S^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}$

Theorem. For any random sample from a population with mean μ and variance σ^{2} :

1. $E(T)=n \mu$ and $\operatorname{Var}(T)=n \sigma^{2}$
2. $E(\bar{X})=\mu$ and $\operatorname{Var}(\bar{X})=\frac{\sigma^{2}}{n}$
3. $E\left(S^{2}\right)=\sigma^{2}$

Definition. A sample statistic $\hat{\Theta}$ is an unbiased estimator of population parameter θ if $E(\hat{\Theta})=\theta$.
Theorem (Central Limit Theorem). If \bar{X} is a the mean of a large random sample from any population, then \bar{X} is approximately normally distributed (with mean and variance given in the theorem above).

Definition. Let X and Y be jointly distributed discrete RVs with joint PMF $f(x, y)=P(X=x, Y=y)$.

1. The marginal PMF of X is $p_{X}(x)=P(X=x)=\sum_{y} p(x, y)$.
2. X and Y are independent if $f(x, y)=f_{X}(x) f_{Y}(y)$.
3. The covariance of X and Y is $\operatorname{Cov}(X, Y)=\sigma_{X, Y}=E\left[\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)\right]=E(X Y)-E(X) E(Y)$.
4. Pearson's correlation coefficient is $\rho=\frac{\operatorname{Cov}(X, Y)}{\sigma_{X} \sigma_{Y}}$.

Definition. Confidence intervals:

1. z_{β} is the z-critical value: $P\left(Z>z_{\beta}\right)=\beta:$| β | 0.1 | 0.05 | 0.025 | 0.01 | 0.005 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| z_{β} | 1.281552 | 1.644854 | 1.959964 | 2.326348 | 2.575829 |
2. If \bar{x} is the mean of a random sample of size n (with n large) from a population with mean μ and standard deviation σ, then a $100(1-\alpha) \%$ confidence interval for μ is $\bar{x} \pm z_{\alpha / 2} \frac{\sigma}{\sqrt{n}}$.
3. If p is the proportion of a random sample of size n (with n large) from a population having a Bernoulli distribution with parameter θ, then an approximate $100(1-\alpha) \%$ confidence interval for θ is $p \pm z_{\alpha / 2} \sqrt{\frac{p(1-p)}{n}}$.
4. $t_{\beta, \nu}$ is the t-critical value for a t-distribution with parameter $\nu: ~ P\left(T>t_{\beta, \nu}\right)=\beta$. Note: t-based confidence intervals won't be on the test, but two snuck on to the WeBWorK.
5. If \bar{x} is the mean of a random sample of size n from a normally-distributed population with mean μ, then a $100(1-\alpha) \%$ confidence interval for μ is $\bar{x} \pm t_{\alpha / 2, n-1} \frac{s}{\sqrt{n}}$.

Definition. The total number of successes in n independent, identically distributed (iid) Bernoulli trials with parameter p is a random variable with a binomial distribution. The PMF of a random variable X having a binomial distribution with parameters n and p is $p(x)=\binom{n}{x} p^{x}(1-p)^{n-x}$ for $x=0,1, \ldots, n$. The \mathbf{R} syntax for the CDF is $P(X \leq x)=\operatorname{pbinom}(\mathrm{x}, \mathrm{n}, \mathrm{p})$.
Proposition. The mean and variance of a binomial distribution are $\mu=n p$ and $\sigma^{2}=n p(1-p)$.
Definition. The number of trials until the first success in a sequence of independent, identically distributed (iid) Bernoulli trials with probability of success p is a random variable with a geometric distribution. The PMF of a random variable X having a geometric distribution with parameter p is

$$
P(X=x)=p(1-p)^{x-1} \text { for } x=1,2,3, \ldots
$$

The CDF is $P(X \leq x)=1-(1-p)^{x}$ for $x=1,2,3, \ldots$.
Proposition. The mean and variance of a geometric distribution are $\mu=\frac{1}{p}$ and $\sigma^{2}=\frac{1-p}{p^{2}}$.
Definition. A Poisson random variable X with parameter $\lambda>0$ has the PMF $p(x)=\frac{\lambda^{x} e^{-\lambda}}{x!}$ for $x=$ $0,1,2, \ldots$. The \mathbf{R} syntax for the CDF is $P(X \leq x)=\operatorname{ppois}(\mathrm{x}, \lambda)$.
Proposition. The mean and variance of a Poisson distribution are $\mu=\lambda$ and $\sigma^{2}=\lambda$.
Definition. A random variable X having a uniform continuous distribution on the interval $[\alpha, \beta]$ has the PDF: $f(x)=\frac{1}{\beta-\alpha}$ if $\alpha<x<\beta$.
Proposition. The mean and variance of a uniform continuous distribution on $[\alpha, \beta]$ are $\mu=\frac{\alpha+\beta}{2}$ and $\sigma^{2}=\frac{(\beta-\alpha)^{2}}{12}$.
Definition. A random variable X having an exponential distribution with parameter $\lambda>0$ has PDF $f(x)=\lambda e^{-\lambda x}$ if $x>0$ and $\operatorname{CDF} P(X \leq x)=1-e^{-\lambda x}$ if $x>0$.
Proposition. The mean and variance of an exponential distribution with parameter λ are $\mu=\frac{1}{\lambda}$ and variance $\sigma^{2}=\frac{1}{\lambda^{2}}$.
Definition. A random variable X having a normal distribution with mean μ and standard deviation σ has the PDF: $f(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}}$ for all $x \in \mathbb{R}$
\mathbf{R} Implementation. If $X \sim \operatorname{Normal}(\mu, \sigma)$, then the CDF is pnorm (x, μ, σ) (note that R wants the standard deviation, not the variance). The parameters μ and σ are optional; if ommitted, they default to $\mu=0$ and $\sigma=1$ (a standard normal distribution).

