EXAM 2 FORMULAS

Formulas in gray will not be provided: **memorize these**.

Theorem. For any random variable X and any constants a and b:

- 1. E(aX + b) = aE(X) + b and
- 2. $Var(aX + b) = a^2 Var(X)$.

Theorem. Let X_1, X_2, \ldots, X_n be any random variables. Then $E(X_1 + X_1 + \cdots + X_n) = E(X_1) + E(X_2) + \cdots + E(X_n)$.

Theorem. Let X_1, X_2, \ldots, X_n be independent random variables. Then $Var(X_1+X_2+\cdots+X_n) = Var(X_1)+Var(X_2)+\cdots+Var(X_n)$.

Theorem (Propagation of error formula). If X is a random variable with mean μ_X and standard deviation σ_X and g(x) is a differentiable function, then

- 1. $E[g(X)] \approx g(\mu_X)$
- 2. $Var[g(X)] \approx [g'(\mu_X)\sigma_X]^2$

Definition. A random sample of size n is a set of independent identically distributed (iid) random variables $X_1, X_2, \ldots X_n$. Some sample statistics:

- 1. The sample total $T = \sum_{i=1}^{n} X_i$
- 2. The sample mean: $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$

3. The sample variance:
$$S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2$$

Theorem. For any random sample from a population with mean μ and variance σ^2 :

1. $E(T) = n\mu$ and $Var(T) = n\sigma^2$ 2. $E(\overline{X}) = \mu$ and $Var(\overline{X}) = \frac{\sigma^2}{n}$ 3. $E(S^2) = \sigma^2$

Definition. A sample statistic $\hat{\Theta}$ is an **unbiased estimator** of population parameter θ if $E(\hat{\Theta}) = \theta$.

Theorem (Central Limit Theorem). If \overline{X} is a the mean of a large random sample from any population, then \overline{X} is approximately normally distributed (with mean and variance given in the theorem above).

Definition. Let X and Y be jointly distributed discrete RVs with joint PMF f(x, y) = P(X = x, Y = y).

- 1. The marginal PMF of X is $p_X(x) = P(X = x) = \sum_{y \in Y} p(x, y)$.
- 2. X and Y are independent if $f(x,y) = f_X(x)f_Y(y)$.
- 3. The covariance of X and Y is $\operatorname{Cov}(X, Y) = \sigma_{X,Y} = E[(X \mu_X)(Y \mu_Y)] = E(XY) E(X)E(Y).$
- 4. Pearson's correlation coefficient is $\rho = \frac{\operatorname{Cov}(X,Y)}{\sigma_X \sigma_Y}$.

Definition. Confidence intervals:

- 1. z_{β} is the z-critical value: $P(Z > z_{\beta}) = \beta$: $\frac{\beta}{z_{\beta}} \frac{0.1}{1.281552} \frac{0.05}{1.644854} \frac{0.025}{1.959964} \frac{0.01}{2.326348} \frac{0.005}{2.575829}$
- 2. If \overline{x} is the mean of a random sample of size n (with n large) from a population with mean μ and standard deviation σ , then a $100(1-\alpha)\%$ confidence interval for μ is $\overline{x} \pm z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$.
- 3. If p is the proportion of a random sample of size n (with n large) from a population having a Bernoulli distribution with parameter θ , then an approximate $100(1 \alpha)\%$ confidence interval for θ

is
$$p \pm z_{\alpha/2} \sqrt{\frac{p(1-p)}{n}}$$
.

Date: March 23, 2024.

EXAM 2 FORMULAS

- 4. $t_{\beta,\nu}$ is the *t*-critical value for a *t*-distribution with parameter ν : $P(T > t_{\beta,\nu}) = \beta$. Note: *t*-based confidence intervals won't be on the test, but two snuck on to the WeBWorK.
- 5. If \overline{x} is the mean of a random sample of size *n* from a normally-distributed population with mean μ , then a $100(1-\alpha)\%$ confidence interval for μ is $\overline{x} \pm t_{\alpha/2,n-1} \frac{s}{\sqrt{n}}$.

Definition. The total number of successes in n independent, identically distributed (iid) Bernoulli trials with parameter p is a random variable with a **binomial** distribution. The PMF of a random variable X having a binomial distribution with parameters n and p is $p(x) = \binom{n}{x}p^x(1-p)^{n-x}$ for x = 0, 1, ..., n. The **R** syntax for the CDF is $P(X \le x) = pbinom(x, n, p)$.

Proposition. The mean and variance of a binomial distribution are $\mu = np$ and $\sigma^2 = np(1-p)$.

Definition. The number of trials until the first success in a sequence of independent, identically distributed (iid) Bernoulli trials with probability of success p is a random variable with a **geometric distribution**. The PMF of a random variable X having a geometric distribution with parameter p is

$$P(X = x) = p(1 - p)^{x-1}$$
 for $x = 1, 2, 3, \dots$

The CDF is $P(X \le x) = 1 - (1 - p)^x$ for x = 1, 2, 3, ...

Proposition. The mean and variance of a geometric distribution are $\mu = \frac{1}{p}$ and $\sigma^2 = \frac{1-p}{p^2}$.

Definition. A **Poisson** random variable X with parameter $\lambda > 0$ has the PMF $p(x) = \frac{\lambda^{x}e^{-\lambda}}{x!}$ for $x = 0, 1, 2, \ldots$ The **R** syntax for the CDF is $P(X \le x) = \text{ppois}(\mathbf{x}, \lambda)$.

Proposition. The mean and variance of a Poisson distribution are $\mu = \lambda$ and $\sigma^2 = \lambda$.

Definition. A random variable X having a **uniform continuous** distribution on the interval $[\alpha, \beta]$ has the PDF: $f(x) = \frac{1}{\beta - \alpha}$ if $\alpha < x < \beta$.

Proposition. The mean and variance of a uniform continuous distribution on $[\alpha, \beta]$ are $\mu = \frac{\alpha+\beta}{2}$ and $\sigma^2 = \frac{(\beta-\alpha)^2}{12}$.

Definition. A random variable X having an **exponential** distribution with parameter $\lambda > 0$ has PDF $f(x) = \lambda e^{-\lambda x}$ if x > 0 and CDF $P(X \le x) = 1 - e^{-\lambda x}$ if x > 0.

Proposition. The mean and variance of an exponential distribution with parameter λ are $\mu = \frac{1}{\lambda}$ and variance $\sigma^2 = \frac{1}{\lambda^2}$.

Definition. A random variable X having a **normal** distribution with mean μ and standard deviation σ has the PDF: $f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$ for all $x \in \mathbb{R}$

R Implementation. If $X \sim \text{Normal}(\mu, \sigma)$, then the CDF is pnorm(x, μ , σ) (note that R wants the standard deviation, not the variance). The parameters μ and σ are optional; if ommitted, they default to $\mu = 0$ and $\sigma = 1$ (a standard normal distribution).