PROBABILITY AND DISCRETE DISTRIBUTIONS

The set of all **outcomes** for an **experiment** is called the **sample space** (usually S, but some authors use Ω). An **event** is a set of outcomes. The assignment of probabilities to events must obey the following rules:

Axioms of Probability.

- 1. P(S) = 1
- 2. $P(E) \ge 0$ for any event E
- 3. If E_1, E_2, E_3, \ldots are disjoint events, then $P(E_1 \cup E_2 \cup E_3 \cup \ldots) = \sum_{i=1}^{\infty} P(E_i)$

Theorem (Basic theorems of probability). Let A and B be events.

- 1. $P(\emptyset) = 0$
- 2. If $A \subseteq B$, then $P(A) \leq P(B)$
- 3. $P(A) = 1 P(A^{C})$
- 4. $P(A) = P(A \cap B) + P(A \cap B^{C})$
- 5. $P(A \cup B) = P(A) + P(B) P(A \cap B)$
- 6. $P(A \cap B) = P(B|A)P(A)$

Theorem. If an experiment has N equally likely outcomes, then $P(E) = \frac{\text{number of outcomes in } E}{N}$

Method. (Multiplication rule for counting) If a process occurs in two steps and there are m options for the first step and n options for the second, then there are mn total possibilities.

Method. The number of ways to select k elements from an n-element set is...

	Order matters	Order doesn't matter
With replacement	n^k	$\binom{n+k-1}{k}$
Without replacement	$\frac{n!}{(n-k)!}$	$\binom{n}{k} = \frac{n!}{(n-k)!k!}$

Note. The number of **combinations** (bottom right corner) $\binom{n}{k} = \frac{n!}{(n-k)!k!}$ is implemented in **R** as choose(n,k). It is implemented in most calculators as nCk or C(n,k). The number of **permutations** (bottom left corner) $\frac{n!}{(n-k)!}$ is implemented in most calculators as nPk or P(n,k).

Definition. Let A and B be events with $P(A) \neq 0$. The conditional probability of B given A is

$$P(B|A) = \frac{P(A \cap B)}{P(A)}$$

Definition. Events A and B are **independent** if and only if $P(A \cap B) = P(A)P(B)$.

Note that if P(B|A) = P(B), then A and B are independent. In other words, if knowing that event A has occurred does not affect our calculation of P(B), then A and B are independent.

Theorem (The Law of Total Probability). If event A has probability strictly between 0 and 1, then for any event B,

$$P(B) = P(B|A)P(A) + P(B|A^{C})P(A^{C})$$

Theorem (Bayes' Law). If A and B are events with positive probability, then

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

Note: the law of total probability is very often used to calculate P(B).

Date: February 6, 2024.

Definition. A random variable X assigns a number to each outcome in the sample space S.

- 1. All random variables have a **cumulative distribution function (CDF)** defined for all real numbers: $F(x) = P(X \le x).$
- 2. If X is a discrete random variable with possible values x_1, x_2, x_3, \ldots , then X has a **probability mass** function (PMF): $p(x_i) = P(X = x_i)$.

Theorem. The PMF of any (discrete) random variable with possible values x_1, x_2, x_3, \ldots has the following properties:

- 1. $0 \le p(x_i) \le 1$ 2. $\sum_{i=1}^{n} p(x_i) = 1$

Theorem. The CDF of any random variable has the following properties:

- 1. Non-decreasing: if $a \leq b$, then $F(a) \leq F(b)$
- 2. $\lim_{x\to\infty} F(x) = 0$ and $\lim_{x\to\infty} F(x) = 1$
- 3. If a < b, then $P(a < X \le b) = F(b) F(a)$

Definition. The **expected value** (or **mean**) of a random variable is a weighted average and is denoted E(X) or μ_X . If X is a discrete RV with possible values x_1, x_2, x_3, \ldots , then

$$E(X) = \sum_{i} x_i P(X = x_i)$$

Definition. A random variable X has a **Bernoulli distribution** with parameter p (with 0) ifX has possible values 0 and 1 with P(X=1)=p and P(X=0)=1-p. The outcome 1 is often referred to as "success" while 0 is "failure" and the experiment is often called a Bernoulli trial.

Definition. The total number of successes in n independent, identically distributed (iid) Bernoulli trials with parameter p is a random variable with a **binomial distribution**. The PMF of a random variable Xhaving a binomial distribution with parameters n and p is

$$P(X = x) = \binom{n}{x} p^x (1-p)^{n-x} \text{ for } x = 0, 1, \dots, n$$

R Implementation. If $X \sim \text{binom}(n, p)$, then the PMF is dbinom(x, n, p) and the CDF is pbinom(x, n, p).

Definition. Suppose n elements are to be selected without replacement from a population of size $M_1 + M_2$ consisting of M_1 successes and M_2 failures and the order of selection doesn't matter. If $n \leq M_1$, then the number of successes selected is a **hypergeometric** random variable and its PMF is

$$P(X = x) = \frac{\binom{M_1}{x} \binom{M_2}{n-x}}{\binom{M_1+M_2}{n}} \text{ for } x = 0, 1, 2, \dots, n$$

R Implementation. If $X \sim \text{hyper}(M_1, M_2, n)$, then the PMF is dhyper(x, M₁, M₂, n) and the CDF is phyper(x, M_1 , M_2 , n).

Note. A standard deck of cards has 52 cards in 4 suits: spades \spadesuit , hearts \heartsuit , clubs \clubsuit , and diamonds \diamondsuit . Spades and clubs are black suits, while hearts and diamonds are red suits. Within each suit there are 13

ranks: 2, 3, 4,, 10, Jack, Queen, King, and Ace. Together, a rank and a suit uniquely identify the care
(cards are 2-dimensional).
1 Suppose 10 cards are dealt from a well-shuffled deck

- 1. Suppose 10 cards are dealt from a well-shuffled deck.
- a) Find the probability that exactly 5 are hearts.

b) Find the probability that 5 or more are hearts.

- 2. Suppose now that you shuffle the deck and look a the top card 10 times (shuffling between attempts).
- a) Find the probability that exactly 5 of the cards you see are hearts.

b) Find the probability that 5 or more are hearts.

- 3. For this problem, suppose you have created a mega deck by shuffling together 10 regular decks (for a total of 520 cards).
- a) Find the probability that exactly 5 are hearts if you deal 10 cards from the mega deck.

b) Find the probability that exactly 5 cards are hearts when you shuffle and look at the top card 10 times (and shuffle between attempts).

4	PRODABILITY AND DISCRETE DISTRIBUTIONS
	Now use a super-mega deck created by shuffling together 100 regular decks (or 10 mega decks). Repeat both parts a and b of the last problem for the super-mega deck of 5200 cards.
b)	What are your observations?
wh ap a]	Return to a regular deck of 52 cards. The goal this time is to find the PMF of a new distribution in nich you count the number of cards you must look at to find a heart. For this problem, take the inefficient proach of shuffling and looking at just the top card. Return the card to the deck an repeat until you see neart. Let X be the number of times you do this (including the time when you see the heart and stop). What are the possible values for X ?
b)	Find the PMF for X .
yo	This is the more reasonable version of the previous problem: deal cards from a well-shuffled deck until u deal a heart. Let Y be the number of cards you deal (including the heart). What are the possible values for Y ?
b)	Find the PMF for Y .