PROBABILITY AND DISCRETE DISTRIBUTIONS

The set of all outcomes for an experiment is called the sample space (usually S, but some authors use Ω). An event is a set of outcomes. The assignment of probabilities to events must obey the following rules:

Axioms of Probability.

1. $P(S)=1$
2. $P(E) \geq 0$ for any event E
3. If $E_{1}, E_{2}, E_{3}, \ldots$ are disjoint events, then $P\left(E_{1} \cup E_{2} \cup E_{3} \cup \ldots\right)=\sum_{i=1}^{\infty} P\left(E_{i}\right)$

Theorem (Basic theorems of probability). Let A and B be events.

1. $P(\emptyset)=0$
2. If $A \subseteq B$, then $P(A) \leq P(B)$
3. $P(A)=1-P\left(A^{C}\right)$
4. $P(A)=P(A \cap B)+P\left(A \cap B^{C}\right)$
5. $P(A \cup B)=P(A)+P(B)-P(A \cap B)$
6. $P(A \cap B)=P(B \mid A) P(A)$

Theorem. If an experiment has N equally likely outcomes, then $P(E)=\frac{\text { number of outcomes in } E}{N}$.
Method. (Multiplication rule for counting) If a process occurs in two steps and there are m options for the first step and n options for the second, then there are $m n$ total possibilities.

Method. The number of ways to select k elements from an n-element set is...

	Order matters	Order doesn't matter
With replacement	n^{k}	$\binom{n+k-1}{k}$
Without replacement	$\frac{n!}{(n-k)!}$	$\binom{n}{k}=\frac{n!}{(n-k)!k!}$

Note. The number of combinations (bottom right corner) $\binom{n}{k}=\frac{n!}{(n-k)!k!}$ is implemented in \mathbf{R} as choose (n, k). It is implemented in most calculators as nCk or $\mathrm{C}(\mathrm{n}, \mathrm{k})$. The number of permutations (bottom left corner) $\frac{n!}{(n-k)!}$ is implemented in most calculators as nPk or $\mathrm{P}(\mathrm{n}, \mathrm{k})$.
Definition. Let A and B be events with $P(A) \neq 0$. The conditional probability of B given A is

$$
P(B \mid A)=\frac{P(A \cap B)}{P(A)}
$$

Definition. Events A and B are independent if and only if $P(A \cap B)=P(A) P(B)$.
Note that if $P(B \mid A)=P(B)$, then A and B are independent. In other words, if knowing that event A has occurred does not affect our calculation of $P(B)$, then A and B are independent.

Theorem (The Law of Total Probability). If event A has probability strictly between 0 and 1 , then for any event B,

$$
P(B)=P(B \mid A) P(A)+P\left(B \mid A^{C}\right) P\left(A^{C}\right)
$$

Theorem (Bayes' Law). If A and B are events with positive probability, then

$$
P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)}
$$

Note: the law of total probability is very often used to calculate $P(B)$.

Definition. A random variable X assigns a number to each outcome in the sample space S.

1. All random variables have a cumulative distribution function (CDF) defined for all real numbers: $F(x)=P(X \leq x)$.
2. If X is a discrete random variable with possible values $x_{1}, x_{2}, x_{3}, \ldots$, then X has a probability mass function (PMF): $p\left(x_{i}\right)=P\left(X=x_{i}\right)$.
Theorem. The PMF of any (discrete) random variable with possible values $x_{1}, x_{2}, x_{3}, \ldots$ has the following properties:
3. $0 \leq p\left(x_{i}\right) \leq 1$
4. $\sum_{i} p\left(x_{i}\right)=1$

Theorem. The CDF of any random variable has the following properties:

1. Non-decreasing: if $a \leq b$, then $F(a) \leq F(b)$
2. $\lim _{x \rightarrow-\infty} F(x)=0$ and $\lim _{x \rightarrow \infty} F(x)=1$
3. If $a<b$, then $P(a<X \leq b)=F(b)-F(a)$

Definition. The expected value (or mean) of a random variable is a weighted average and is denoted $E(X)$ or μ_{X}. If X is a discrete RV with possible values $x_{1}, x_{2}, x_{3}, \ldots$, then

$$
E(X)=\sum_{i} x_{i} P\left(X=x_{i}\right)
$$

Definition. A random variable X has a Bernoulli distribution with parameter p (with $0<p<1$) if X has possible values 0 and 1 with $P(X=1)=p$ and $P(X=0)=1-p$. The outcome 1 is often referred to as "success" while 0 is "failure" and the experiment is often called a Bernoulli trial.

Definition. The total number of successes in n independent, identically distributed (iid) Bernoulli trials with parameter p is a random variable with a binomial distribution. The PMF of a random variable X having a binomial distribution with parameters n and p is

$$
P(X=x)=\binom{n}{x} p^{x}(1-p)^{n-x} \text { for } x=0,1, \ldots, n
$$

R Implementation. If $X \sim \operatorname{binom}(n, p)$, then the PMF is dbinom ($\mathrm{x}, \mathrm{n}, \mathrm{p}$) and the CDF is pbinom (x , n, p).
Definition. Suppose n elements are to be selected without replacement from a population of size $M_{1}+M_{2}$ consisting of M_{1} successes and M_{2} failures and the order of selection doesn't matter. If $n \leq M_{1}$, then the number of successes selected is a hypergeometric random variable and its PMF is

$$
P(X=x)=\frac{\binom{M_{1}}{x}\binom{M_{2}}{n-x}}{\binom{M_{1}+M_{2}}{n}} \text { for } x=0,1,2, \ldots, n
$$

R Implementation. If $X \sim \operatorname{hyper}\left(M_{1}, M_{2}, n\right)$, then the PMF is dhyper $\left(\mathrm{x}, \mathrm{M}_{1}, \mathrm{M}_{2}, \mathrm{n}\right)$ and the CDF is $\operatorname{phyper}\left(\mathrm{x}, \mathrm{M}_{1}, \mathrm{M}_{2}, \mathrm{n}\right)$.

Note. A standard deck of cards has 52 cards in 4 suits: spades $\boldsymbol{\oplus}$, hearts \odot, clubs $\boldsymbol{\&}$, and diamonds \diamond. Spades and clubs are black suits, while hearts and diamonds are red suits. Within each suit there are 13 ranks: $2,3,4, \ldots, 10$, Jack, Queen, King, and Ace. Together, a rank and a suit uniquely identify the card (cards are 2-dimensional).

1. Suppose 10 cards are dealt from a well-shuffled deck.
a) Find the probability that exactly 5 are hearts.
b) Find the probability that 5 or more are hearts.
2. Suppose now that you shuffle the deck and look a the top card 10 times (shuffling between attempts).
a) Find the probability that exactly 5 of the cards you see are hearts.
b) Find the probability that 5 or more are hearts.
3. For this problem, suppose you have created a mega deck by shuffling together 10 regular decks (for a total of 520 cards).
a) Find the probability that exactly 5 are hearts if you deal 10 cards from the mega deck.
b) Find the probability that exactly 5 cards are hearts when you shuffle and look at the top card 10 times (and shuffle between attempts).
4. Now use a super-mega deck created by shuffling together 100 regular decks (or 10 mega decks).
a) Repeat both parts a and b of the last problem for the super-mega deck of 5200 cards.
b) What are your observations?
5. Return to a regular deck of 52 cards. The goal this time is to find the PMF of a new distribution in which you count the number of cards you must look at to find a heart. For this problem, take the inefficient approach of shuffling and looking at just the top card. Return the card to the deck an repeat until you see a heart. Let X be the number of times you do this (including the time when you see the heart and stop).
a) What are the possible values for X ?
b) Find the PMF for X.
6. This is the more reasonable version of the previous problem: deal cards from a well-shuffled deck until you deal a heart. Let Y be the number of cards you deal (including the heart).
a) What are the possible values for Y ?
b) Find the PMF for Y.
