FUNCTIONS OF RANDOM VARIABLES

Definition. Let g(x) be a continuous function and let X be a continuous random variable with PDF f(x).

Then
$$E[g(X)] = \int_{-\infty}^{+\infty} g(x)f(x) dx$$

1. Let X be a continuous random variable with mean 50 and standard deviation 4. Calculate $E\left(\frac{X-50}{4}\right)$ and $\operatorname{Var}\left(\frac{X-50}{4}\right)$. Hint: the given information includes $50=E(X)=\int_{-\infty}^{\infty}xf(x)\ dx$ and $16=\operatorname{Var}(X)=E(X^2)-50^2$.

$$Var\left(\frac{X-50}{4}\right) = E\left[\left(\frac{X-50}{4}\right)^{2}\right] - \left[E\left(\frac{X-50}{4}\right)^{2} = E\left[\left(\frac{X-70}{4}\right)^{2}\right]$$

$$= \int_{-\infty}^{\infty} \left(\frac{X-50}{4}\right)^{2} f(x) dx =$$

Challenge. Fill in the blanks in the following theorem with expressions involving a, b, μ , and σ .

Theorem 1. Let X be a random variable with mean μ and variance σ^2 and let a and b be constants.

i) $E(aX + b) = \boxed{\alpha \times b} = \boxed{\alpha \times b$

i)
$$E(aX + b) = \boxed{AM + b} = aE(X) + b$$

$$ii) \ Var(aX+b) = \boxed{a^2 \ \sigma^2} \qquad \qquad = a^2 \ Var(\mathbb{Z})$$

obscrete case similar

Theorem 2. Let X_1, X_2, \ldots, X_n be any random variables. Then $E(X_1 + X_1 + \cdots + X_n) = E(X_1) + E(X_2) + \cdots + E(X_n)$.

Theorem 3. Let X_1, X_2, \ldots, X_n be independent random variables. Then $Var(X_1 + X_2 + \cdots + X_n) = Var(X_1) + Var(X_2) + \cdots + Var(X_n)$.

Definition. We say that the random variables X_1, X_2, \ldots, X_n are a random sample if they are independent and identically distributed. The sample size is n. Their common distribution is called the population distribution. Some sample statistics:

1. The sample total:
$$T = \sum_{i=1}^{n} X_i = X_1 + X_1 + \dots + X_n$$
 $\xi(T) = N M \forall \alpha(T) = N T^2$

2. The sample mean:
$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i = \frac{1}{n} (X_1 + X_1 + \dots + X_n)$$
 $\mathcal{E}(\widetilde{X}) = \mathcal{M} \quad \mathcal{M}(\widetilde{X}) = \frac{\sigma^2}{n}$

3. The sample variance:
$$S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2$$

Our goal is to understand the distributions of these sample statistics.

2. Let X_1, X_2, \ldots, X_n be a random sample from a population with mean μ and variance σ^2 . Calculate the expected value and variance of the sample mean (that's $E(\overline{X})$ and $Var(\overline{X})$).

$$E(\overline{X}) = E\left[\frac{1}{N}(X_1 + X_2 + \cdots + X_N)\right]$$

$$= \frac{1}{N}E(X_1 + X_2 + \cdots + X_N)$$

$$= \frac{1}{N}\left[E(X_1) + E(X_2) + \cdots + E(X_N)\right] \quad \text{by theorem } 2$$

$$= \frac{1}{N}\left[\frac{1}{N} + \frac{1}{N} + \frac{1}{N} + \cdots + \frac{1}{N}\right] \quad \text{since} \quad E(X_1) = M \quad \text{for } i=1,2,..., N$$

$$= \frac{1}{N}\left[\frac{1}{N}(X_1 + X_2 + \cdots + X_N)\right]$$

$$= \frac{1}{N}\left[\frac{1}{N}(X_1 + X_2 + \cdots + X_N)\right]$$

$$= \frac{1}{N}\left[\frac{1}{N}(X_1 + X_2 + \cdots + X_N)\right] \quad \text{by theorem } 3$$

$$= \frac{1}{N}\left[\frac{1}{N}(X_1 + X_2 + \cdots + X_N) + \cdots + \frac{1}{N}(X_1) + \cdots + \frac{1}$$

Theorem 4 (Central Limit Theorem). If X_1, X_2, \ldots, X_n comprise a random sample from a population with mean μ and variance σ^2 , then the limiting distribution (as $n \to \infty$) of $\frac{\overline{X} - \mu}{\frac{\sigma}{\sqrt{n}}}$ is a standard normal distribution. Note: $\overline{\Phi}(x)$: Projection are both the CDF of the std roughly distribution.

The CLT tells us that for large sample sizes \overline{X} is approximately normal with mean μ and variance $\frac{\sigma^2}{n}$. By noticing that $T = n\overline{X}$, we can also say that T approximately normal with mean $n\mu$ and variance $n\sigma^2$ (for large samples). Use these normal approximations to answer the following problems.

- 3. A certain kind of bicycle spoke has a mean mass of $\mu = 4.2$ g with a standard deviation of $\sigma = 0.4$ g. I intend to build a wheel with n = 32 spokes.
- a) What is the probability that the total mass of the spokes in my wheel is under 136 g?
- b) What is the probability that the total mass of the spokes in my wheel exceeds 130 g?
- c) Suppose I build two wheels with these spokes. What is the probability that the total mass of the 64 spokes will be under 272 g?

spokes will be under
$$272 \text{ g?}$$

Note: $T = N \overline{X}$ so $E(T) = NE(\overline{X}) = NM$ and $Var(T) = N^2 Var(\overline{X}) = NT^2$.

In this problem $M = 4.2$, $\sigma^2 = (0.4)^2$ and $N = 32$. Hence $E(T) = 134.4$ and $Var(T) = 5.12$ J^2
 $T \sim N(134.4, 5.12)$, approximately.

a)
$$P(T = 130) \approx \overline{\mathbb{Q}} \left(\frac{136 \cdot 134.4}{15.12} \right) = \overline{\mathbb{Q}} \left(0.7071 \right) \approx 0.7602$$

b) $P(T = 130) \approx 1 - \overline{\mathbb{Q}} \left(\frac{130 \cdot 134.4}{1512} \right) = 1 - \overline{\mathbb{Q}} \left(-1.9445 \right) \approx 0.9741$

c) Now
$$N=64$$
, so the variace is now $64(0.4)^2:10.24$ and the man is 268.8 $P(T \le 272) \approx \overline{U}\left(\frac{272-268.8}{10.24}\right) = \overline{D}(1) \approx 0.8413$

4. Suppose you roll a fair 6-sided die 50 times. Estimate the probability that the mean of all the rolls is at least 4. Hint: think of this as a random sample of size 50 from an underlying population with the mean and variance of a single roll of the die (you may need to calculate this mean and variance).

The nem of one roll is
$$\frac{1}{2}$$
The serious of one roll is: $\frac{9}{6} \cdot (\frac{7}{2})^2 = \frac{91}{6} \cdot \frac{49}{9} = \frac{182 - 147}{12} \cdot \frac{35}{12}$

$$\frac{1 + 4 + 9 + 16 + 25 + 36}{6} = \frac{91}{6}$$
Thus $X \sim N(\frac{7}{2}, \frac{7}{120})$ and $P(X \ge 4) \approx 1 - \overline{P}(\frac{4 - \frac{7}{2}}{17/120}) \approx 1 - \overline{D}(2.0702)$

$$\approx 0.0192$$

- 5. If the underlying population is normally distributed, then $Z = \frac{\overline{X} \mu}{\sigma/\sqrt{n}}$ is a standard normal random variable (not just approximately standard normal), so our calculations are the same, but our answers are exact and all sample sizes work. Suppose we have a normally distributed population with mean 100 and standard deviation 10. Let \overline{X} be the mean of a random sample of size n. Calculate $P(98 < \overline{X} < 102)$ for each sample size.
- a) n = 1
- b) n = 25
- c) n = 100
- d) n = 10000

a)
$$n = 10000$$

$$P(98 < \overline{X} < 102) = P(\frac{98 - 100}{0.000}) < \overline{Z} < \frac{102 - 100}{10.000}) = \overline{\Psi}(0.21\overline{N}) \cdot \overline{\Psi}(-0.21\overline{N})$$

$$N = \frac{10000}{0.1585194}$$

$$25 = 0.6826895$$

$$100 = 0.9544997$$

$$1000 = 1$$

- 6. Binomial distributions show up when we count the number of successes in a random sample. For example, suppose you roll a fair 6-sided die 64 times. Let T be the number of sixes you roll.
- a) What is the (exact) distribution of T?
- b) Calculate $P(T \ge 12)$.
- c) The CLT says that T is approximately normal with mean 64(1/6) and variance 64(1/6)(5/6). Use this normal approximation to estimate $P(T \ge 12)$. How does this answer compare with the exact answer you found in part b?

0.4472163