BOUNDS AND BIJECTIONS

Lemma (Triangle inequality). For all $x, y \in \mathbb{R},|x+y| \leq|x|+|y|$.
Definition. A function $f: D \rightarrow \mathbb{R}$ is bounded if there is $M \in \mathbb{R}$ such that $|f(x)| \leq M$ for all $x \in D$.

1. Use the triangle inequality to show that the function $f:[-3,5] \rightarrow \mathbb{R}$ defined by $f(x)=x^{2}-6 x+1$ is bounded.

Definition. Let $f: D \rightarrow \mathbb{R}$ be a function. Then $f(D):=\{f(x): x \in D\}$ and

$$
\sup _{x \in D} f(x):=\sup f(D) \text { and } \inf _{x \in D} f(x):=\inf f(D)
$$

2. Find $\inf _{x \in D} f(x)$ and $\sup _{x \in D} f(x)$ for the function in the previous problem.
3. Does your answer to the previous problem change if we change the domain to $(-3,5)$ but otherwise keep the function the same?

Proposition. Let D be a nonempty set and $f: D \rightarrow \mathbb{R}$ and $g: D \rightarrow \mathbb{R}$ be bounded functions such that $\forall x \in D, f(x) \leq g(x)$. Then

$$
\sup _{x \in D} f(x) \leq \sup _{x \in D} g(x) \text { and } \inf _{x \in D} f(x) \leq \inf _{x \in D} g(x) .
$$

4. Prove that it is possible for f and g to satisfy the conditions of the previous proposition but still have $\inf _{x \in D} g(x) \leq \sup _{x \in D} f(x)$. (This means producing an example of two bounded functions f and g such that $\forall x \in D, f(x) \leq g(x)$ and $\left.\inf _{x \in D} g(x) \leq \sup _{x \in D} f(x)\right)$.

Definition. Sets A and B have the same cardinality (notation: $|A|=|B|$) if there is a bijection $f: A \rightarrow B$. 5. Prove that the real intervals $(0,1)$ and $(0, \infty)$ have the same cardinality by producing a bijection.

Challenge. Prove that $(0,1)$ and \mathbb{R} have the same cardinality by producing a bijection. (The composition of two bijections is again a bijection so it might be helpful to work in two steps: e.g. $(0,1) \rightarrow(-1,1) \rightarrow \mathbb{R})$

