MORE SEQUENCES (YAY!)

Definition. Let $\left\{x_{n}\right\}$ be a bounded sequence. Define the following:

$$
\begin{aligned}
a_{n} & =\sup \left\{x_{k}: k \geq n\right\} \\
b_{n} & =\inf \left\{x_{k}: k \geq n\right\} \\
\limsup _{n \rightarrow \infty} x_{n} & =\lim _{n \rightarrow \infty} a_{n} \\
\liminf _{n \rightarrow \infty} x_{n} & =\lim _{n \rightarrow \infty} b_{n}
\end{aligned}
$$

1. Consider the sequence $\left\{\cos \left(\frac{n \pi}{2}\right)\right\}$.
a) Let $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ be defined as above. Find the first few terms of both sequences.
b) Find $\limsup _{n \rightarrow \infty} \cos \left(\frac{n \pi}{2}\right)$ and $\liminf _{n \rightarrow \infty} \cos \left(\frac{n \pi}{2}\right)$.
c) Find a subsequence that converges to something other than $\limsup _{n \rightarrow \infty} \cos \left(\frac{n \pi}{2}\right)$ or $\liminf _{n \rightarrow \infty} \cos \left(\frac{n \pi}{2}\right)$.
2. Consider the sequence $\left\{\frac{\cos (n \pi / 2)}{n}\right\}$.
a) Let $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ be defined as above. Find the first few terms of both sequences.
b) Find $\limsup _{n \rightarrow \infty} \frac{\cos (n \pi / 2)}{n}$ and $\liminf _{n \rightarrow \infty} \frac{\cos (n \pi / 2)}{n}$.
c) Do any subsequences converge to some other value?

Definition. The sequence $\left\{x_{n}\right\}$ converges to $x \in \mathbb{R}$ if $\forall \varepsilon>0 \exists M \in \mathbb{N} \forall n \geq M,\left|x_{n}-x\right|<\varepsilon$.
Definition. A sequence $\left\{x_{n}\right\}$ is a Cauchy sequence if $\forall \varepsilon>0 \exists M \in \mathbb{N} \forall n, k \geq m,\left|x_{n}-x_{k}\right|<\varepsilon$
3. Show that $\left\{\frac{n^{2}-1}{n^{2}}\right\}$ is a Cauchy sequence.

