MORE SEQUENCES (YAY!)

Definition. Let $\{x_n\}$ be a bounded sequence. Define the following:

$$a_n = \sup\{x_k : k \ge n\}$$
$$b_n = \inf\{x_k : k \ge n\}$$
$$\limsup_{n \to \infty} x_n = \lim_{n \to \infty} a_n$$
$$\liminf_{n \to \infty} x_n = \lim_{n \to \infty} b_n$$

- **1.** Consider the sequence $\left\{\cos\left(\frac{n\pi}{2}\right)\right\}$.
 - a) Let $\{a_n\}$ and $\{b_n\}$ be defined as above. Find the first few terms of both sequences.
 - b) Find $\limsup_{n \to \infty} \cos\left(\frac{n\pi}{2}\right)$ and $\liminf_{n \to \infty} \cos\left(\frac{n\pi}{2}\right)$.
 - c) Find a subsequence that converges to something other than $\limsup_{n \to \infty} \cos\left(\frac{n\pi}{2}\right)$ or $\liminf_{n \to \infty} \cos\left(\frac{n\pi}{2}\right)$.

- **2.** Consider the sequence $\left\{\frac{\cos(n\pi/2)}{n}\right\}$.
 - a) Let $\{a_n\}$ and $\{b_n\}$ be defined as above. Find the first few terms of both sequences. b) Find $\limsup_{n\to\infty} \frac{\cos(n\pi/2)}{n}$ and $\liminf_{n\to\infty} \frac{\cos(n\pi/2)}{n}$.

 - c) Do any subsequences converge to some other value?

Date: February 18, 2022.

Definition. The sequence $\{x_n\}$ converges to $x \in \mathbb{R}$ if $\forall \varepsilon > 0 \ \exists M \in \mathbb{N} \ \forall n \ge M, \ |x_n - x| < \varepsilon$.

Definition. A sequence $\{x_n\}$ is a **Cauchy sequence** if $\forall \varepsilon > 0 \ \exists M \in \mathbb{N} \ \forall n, k \ge m, \ |x_n - x_k| < \varepsilon$

3. Show that $\left\{\frac{n^2-1}{n^2}\right\}$ is a Cauchy sequence.