CONTINUITY

Definition. Let $S \subseteq \mathbb{R}$ and let $c \in S$ and $f: S \rightarrow \mathbb{R}$. The function f is continuous at c if

$$
\forall \varepsilon>0 \exists \delta>0 \forall x \in S \quad(|x-c|<\delta \Longrightarrow|f(x)-f(c)|<\varepsilon)
$$

If f is continuous at all points of S, then we say that f is continuous.
Proposition (Basic properties of continuous functions). Let $S \subseteq \mathbb{R}$ and let $c \in S$ and $f: S \rightarrow \mathbb{R}$.
i) If c is not a cluster point of S, then f is continuous at c.
ii) If c is a cluster point of S, then f is continuous at c if and only if the limit of $f(x)$ as $x \rightarrow c$ exists and $\lim _{x \rightarrow c} f(x)=f(c)$.
iii) The function f is continuous at c if and only if for every sequence $\left\{x_{n}\right\}$ having $x_{n} \in S$ for all n and $\lim _{n \rightarrow \infty} x_{n}=c$, the sequence $\left\{f\left(x_{n}\right)\right\}$ converges to $f(c)$.

1. Determine if the following functions are continuous (pay attention to their domains). No proofs are required, though you should have some sense for how you might write a proof. You may use (without proof) the fact that the sine function is continuous.
a) $f:(0, \infty) \rightarrow \mathbb{R}$ defined by $f(x)=\sin \left(\frac{1}{x}\right)$
b) $f:[0, \infty) \rightarrow \mathbb{R}$ defined by $f(x)= \begin{cases}\sin \left(\frac{1}{x}\right) & \text { if } x>0 \\ 0 & \text { if } x=0\end{cases}$
c) $f:\{0\} \cup[0.5, \infty) \rightarrow \mathbb{R}$ defined by $f(x)= \begin{cases}\sin \left(\frac{1}{x}\right) & \text { if } x>0 \\ 0 & \text { if } x=0\end{cases}$
d) $f:\{0\} \cup\left\{\frac{2}{\pi n}: n \in \mathbb{N}\right\} \rightarrow \mathbb{R}$ defined by $f(x)= \begin{cases}\sin \left(\frac{1}{x}\right) & \text { if } x>0 \\ 0 & \text { if } x=0\end{cases}$
e) $f:\{0\} \cup\left\{\frac{1}{\pi n}: n \in \mathbb{N}\right\} \rightarrow \mathbb{R}$ defined by $f(x)= \begin{cases}\sin \left(\frac{1}{x}\right) & \text { if } x>0 \\ 0 & \text { if } x=0\end{cases}$
2. Prove part i of the proposition.
3. Prove part $i i$ of the proposition.

Challenge. Prove part iii of the proposition.

