DERIVATIVES

Definition. Let *I* be an interval and let $f: I \to \mathbb{R}$ and $c \in I$. The **derivative** of *f* at *c* is $\lim_{x \to c} \frac{f(x) - f(c)}{x - c}$. If the limit converges, then we say *f* is differentiable at *c*. If *f* is differentiable at every $c \in I$, then we say that *f* is differentiable. The quantity $\frac{f(x) - f(c)}{x - c}$ is called the difference quotient.

1. Let $f : \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = x^2$. Prove that f is differentiable (let $c \in \mathbb{R}$ and prove that $\lim_{x\to c} \frac{f(x)-f(c)}{x-c}$ converges).

2. Let $f : \mathbb{R} \to \mathbb{R}$ be defined by f(x) = |x|. Prove that f is not differentiable at 0.

Date: April 1, 2022.

3. Prove the product rule: if f and g are both differentiable at c, then (fg)'(c) = g(c)f'(c) + f(c)g'(c) (and thus fg is differentiable at c).

Definition. Let $f: S \to \mathbb{R}$. The function f has a **relative maximum** at $c \in S$ if there is $\delta > 0$ such that for all $x \in S \cap (c - \delta, c + \delta)$, $f(x) \leq f(c)$. Reverse the last inequality to get the definition of a **relative minimum**.

4. Suppose $f : [a, b] \to \mathbb{R}$ is differentiable at $c \in (a, b)$ and f has a relative minimum at c. Prove that f'(c) = 0. Hint: break the interval $(c - \delta, c + \delta)$ into $(c - \delta, c]$ and $[c, c + \delta)$.