THE MVT

Proposition. Let $f:[a, b] \rightarrow \mathbb{R}$ be differentiable at $c \in(a, b)$. If f has a relative minimum or a relative maximum at c, then $f^{\prime}(c)=0$.
Theorem (Rolle's theorem). Let $f:[a, b] \rightarrow \mathbb{R}$ be continuous with $f(a)=f(b)$. If f is differentiable on (a, b), then there is $c \in(a, b)$ such that $f^{\prime}(c)=0$.

1. Prove Rolle's theorem.
2. Find an example of a continuous function $f:[0,1] \rightarrow \mathbb{R}$ such that $f(0)=f(1)$ but $f^{\prime}(c) \neq 0$ for every $c \in(0,1)$ at which f is differentiable. Try to minimize the number of points at which f isn't differentiable.

Theorem (Mean value theorem). Let $f:[a, b] \rightarrow \mathbb{R}$ be continuous and also differentiable on (a, b). Then there is $c \in(a, b)$ such that $f(b)-f(a)=f^{\prime}(c)(b-a)$.
3. Your goal is to prove the MVT.
a) Find an equation $y=L(x)$ for the line through the points $(a, f(a))$ and $(b, f(b))$.
b) Define a new function $g:[a, b] \rightarrow \mathbb{R}$ by $g(x)=f(x)-L(x)$.
c) Verify that g is continuous on $[a, b]$ and differentiable on (a, b).
d) Use Rolle's theorem and finish the proof.

Corollary. Let I be an interval and let $f: I \rightarrow \mathbb{R}$ be differentiable.
i) f is constant if and only if $f^{\prime}(x)=0$ for all $x \in I$.
ii) f is increasing if and only if $f^{\prime}(x) \geq 0$ for all $x \in I$.
iii) f is decreasing if and only if $f^{\prime}(x) \leq 0$ for all $x \in I$.
4. Prove the corollary.

