THE MVT

Proposition. Let $f : [a,b] \to \mathbb{R}$ be differentiable at $c \in (a,b)$. If f has a relative minimum or a relative maximum at c, then f'(c) = 0.

Theorem (Rolle's theorem). Let $f : [a,b] \to \mathbb{R}$ be continuous with f(a) = f(b). If f is differentiable on (a,b), then there is $c \in (a,b)$ such that f'(c) = 0.

1. Prove Rolle's theorem.

2. Find an example of a continuous function $f : [0,1] \to \mathbb{R}$ such that f(0) = f(1) but $f'(c) \neq 0$ for every $c \in (0,1)$ at which f is differentiable. Try to minimize the number of points at which f isn't differentiable.

Date: April 6, 2022.

Theorem (Mean value theorem). Let $f : [a, b] \to \mathbb{R}$ be continuous and also differentiable on (a, b). Then there is $c \in (a, b)$ such that f(b) - f(a) = f'(c)(b - a).

3. Your goal is to prove the MVT.

- a) Find an equation y = L(x) for the line through the points (a, f(a)) and (b, f(b)).
- b) Define a new function $g: [a, b] \to \mathbb{R}$ by g(x) = f(x) L(x).
- c) Verify that g is continuous on [a, b] and differentiable on (a, b).
- d) Use Rolle's theorem and finish the proof.

Corollary. Let I be an interval and let $f: I \to \mathbb{R}$ be differentiable.

- i) f is constant if and only if f'(x) = 0 for all $x \in I$.
- ii) f is increasing if and only if $f'(x) \ge 0$ for all $x \in I$.
- iii) f is decreasing if and only if $f'(x) \leq 0$ for all $x \in I$.

4. Prove the corollary.