THE FUNDAMENTAL THEOREM OF CALCULUS

Theorem (Fundamental Theorem of Calculus I). Let $F:[a, b] \rightarrow \mathbb{R}$ be continuous. If F is differentiable on (a, b), and $f \in \mathcal{R}[a, b]$ such that $f(x)=F^{\prime}(x)$ for all $x \in(a, b)$, then $\int_{a}^{b} f=F(b)-F(a)$.

1. Our goal is to prove the theorem. Let $P=\left\{x_{0}, x_{1}, x_{2}, \ldots, x_{n}\right\}$ be a partition of $[a, b]$.
a) Apply the MVT to each interval $\left[x_{i-1}, x_{i}\right]$ to find $c_{i} \in\left(x_{i-1}, x_{i}\right)$.
b) Use the MVT to convert $\sum_{i=1}^{n} f\left(c_{i}\right) \Delta x_{i}$ to a sum involving F only (no derivatives). Cancel and simplify where possible.
c) How is $\sum_{i=1}^{n} f\left(c_{i}\right) \Delta x_{i}$ related to $L(P, f)$ and $U(P, f)$?
d) Take the supremum of $L(P, f)$ and infimum of $U(P, f)$ and use the fact that f is integrable to finish the proof.

Theorem (Fundamental Theorem of Calculus II). Let $f \in \mathcal{R}[a, b]$. Define $F(x)=\int_{a}^{x} f$. Then F is continuous on $[a, b]$ and if f is continuous at $c \in[a, b]$, then F is differentiable at c and $F^{\prime}(c)=f(c)$.
2. Our goal again is to prove the theorem.
a) First prove that F is Lipschitz continuous using the fact that f must be bounded.
b) Now suppose that f is continuous at c. Let $\varepsilon>0$ be given and let $\delta>0$ be such that $|x-c|<\delta$ implies $|f(x)-f(c)|<\varepsilon$ (definition of continuity). Rewrite the last inequality with $f(x)$ in the middle.
c) Now use the bounds you found for f to find bounds for $\int_{c}^{x} f$ when $x>c$. (Careful with variables here: this x is different from the one before. Also watch out for $<$ becoming \leq.)
d) Rearrange your inequality to arrive at $-\varepsilon \leq$ \qquad $\leq \varepsilon$.
e) Now use additivity of integrals $\left(\int_{c}^{x} f=\int_{a}^{x} \overline{\left.f-\int_{a}^{c} f\right)}\right.$ and the definition of F to finish proving that $\left|\frac{F(x)-F(c)}{x-c}-f(c)\right| \leq \varepsilon$.
f) Explain why the result follows even though we got \leq instead of $<$.

