THE FUNDAMENTAL THEOREM OF CALCULUS

Theorem (Fundamental Theorem of Calculus I). Let $F : [a, b] \to \mathbb{R}$ be continuous. If F is differentiable on (a, b), and $f \in \mathcal{R}[a, b]$ such that f(x) = F'(x) for all $x \in (a, b)$, then $\int_a^b f = F(b) - F(a)$.

- **1.** Our goal is to prove the theorem. Let $P = \{x_0, x_1, x_2, \dots, x_n\}$ be a partition of [a, b].
 - a) Apply the MVT to each interval $[x_{i-1}, x_i]$ to find $c_i \in (x_{i-1}, x_i)$.
 - b) Use the MVT to convert $\sum_{i=1}^{n} f(c_i) \Delta x_i$ to a sum involving F only (no derivatives). Cancel and simplify where possible.
 - c) How is $\sum_{i=1}^{n} f(c_i) \Delta x_i$ related to L(P, f) and U(P, f)?
 - d) Take the supremum of L(P, f) and infimum of U(P, f) and use the fact that f is integrable to finish the proof.

Date: April 25, 2022.

Theorem (Fundamental Theorem of Calculus II). Let $f \in \mathcal{R}[a,b]$. Define $F(x) = \int_a^x f$. Then F is continuous on [a,b] and if f is continuous at $c \in [a,b]$, then F is differentiable at c and F'(c) = f(c).

- 2. Our goal again is to prove the theorem.
 - a) First prove that F is Lipschitz continuous using the fact that f must be bounded.
 - b) Now suppose that f is continuous at c. Let $\varepsilon > 0$ be given and let $\delta > 0$ be such that $|x c| < \delta$ implies $|f(x) - f(c)| < \varepsilon$ (definition of continuity). Rewrite the last inequality with f(x) in the middle.
 - c) Now use the bounds you found for f to find bounds for $\int_c^x f$ when x > c. (Careful with variables here: this x is different from the one before. Also watch out for < becoming \leq .)

 - d) Rearrange your inequality to arrive at $-\varepsilon \leq \underline{\qquad} \leq \varepsilon$. e) Now use additivity of integrals $(\int_c^x f = \int_a^x f \int_a^c f)$ and the definition of F to finish proving that $|F(x) - F(c) - f(c)| \leq$

$$\left|\frac{1}{x-c} - f(c)\right| \leq \varepsilon.$$
f) Explain why the result follows even though we got \leq instead of $<$.