Definition. If X and Y are jointly distributed random variables with means μ_X and μ_Y , respectively, then $E[(X - \mu_X)(Y - \mu_Y)]$ is called the *covariance* of X and Y and is denoted σ_{XY} , cov(X, Y), or C(X, Y).

Theorem 1. C(X,Y) = E(XY) - E(X)E(Y)

1. Calculate C(X,Y) for X and Y with joint probability density $f(x,y) = \begin{cases} 4xy & \text{if } 0 < x < 1, \ 0 < y < 1 \\ 0 & \text{elsewhere} \end{cases}$

2. Calculate C(X,Y) for X and Y with joint probability density $f(x,y) = \begin{cases} \frac{6}{5}(x^2+y) & \text{if } 0 < x < 1, \ 0 < y < 1 \\ 0 & \text{elsewhere} \end{cases}$

- **3.** Let X be a random variable and let a and b be constants.
- a) Show that $V(aX + b) = a^2V(X)$

b) If $M_{aX+b}(t) = E\left[e^{(aX+b)t}\right]$, show that $M_{aX+b}(t) = e^{bt}M_X(at)$.