Definition 1. A random variable X has a discrete uniform distribution if it is equally likely to assume any one of a finite set of possible values.

Examples. Roll a single die. Choose a number in a lottery.

Definition 2. A random variable X has a $Bernoulli \ distribution$ with parameter θ (with $0 < \theta < 1$) if its probability distribution is $f(x;\theta) = \begin{cases} 1-\theta & \text{if } x=0 \\ \theta & \text{if } x=1 \end{cases}$. The outcome 1 is often referred to as "success" while 0 is "failure" and the random variable is often called a Bernoulli trial.

Examples. Flip a coin and count the number of heads. Ask one person a yes or no question.

1. Express the mean and variance of a Bernoulli random variable as functions of θ .

Definition 3. The total number of successes in n independent Bernoulli trials is a random variable with a *Binomial distribution*. More precisely, let X_1, X_2, \ldots, X_n be n independent, identically distributed (iid) Bernoulli random variables, all with probability of success θ . The total number of successes is $X = X_1 + X_2 + \cdots + X_n$. The random variable X has a binomial distribution with parameters n and θ and its probability distribution function is

$$b(x; n, \theta) =$$
 for $x = 0, 1, ..., n$.

Examples. Flip n identical coins and count the number of heads. Ask n people a yes or no question on a survey.

2. a) Fill in the probability distribution function for the binomial random variable X above.

b) Use theorem 4.14 to find the mean and variance of X (as functions of n and θ).

Definition 4. Let $X_1, X_2,...$ be a sequence of independent, identically distributed (iid) Bernoulli trials, all with probability of success θ . Let N be the trial on which the first success occurs. The random variable N is said to have a geometric distribution with parameter θ and its probability distribution function is

$$g(n:\theta) =$$
 for $n = 1, 2, 3, ...$

Examples. Flip a coin until the first heads appears. Roll a pair of dice until you first get a pair of sixes. Ask people a yes or no question until you first get a yes.

3. Fill in the probability distribution function of N.

- 4. The goal now is to find the mean and variance of this distribution. The following questions outline one method, but other methods exist (the moment-generating function or using the mean and variance of the negative binomial distribution below, for example). Use whatever approach you like.
- a) Calculate the expected value of N. Hint: differentiate both sides of $\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n$.
- b) Calculate E[N(N+1)]. Hint: take the second derivative of both sides of $\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n$.
- c) Use E(N) and E[N(N+1)] to calculate V(N).

Definition 5. Let $X_1, X_2,...$ be a sequence of independent, identically distributed (iid) Bernoulli random variables, all with probability of success θ . Now let N be the trial on which the k^{th} success occurs (so the possible values for N are k, k+1, k+2,...). Such a random variable is said to have a *negative binomial (or binomial waiting-time or Pascal)* distribution with parameters k and θ and its probability distribution function is

$$b^*(n; k, \theta) =$$
 for $n = k, k + 1, k + 2, ...$

5. Fill in the probability distribution function of the negative binomial random variable N.

Challenge. Find the mean and variance of the negative binomial distribution.

Definition 6. A random variable with the probability distribution function

$$p(x; \lambda) = \frac{\lambda^x e^{-\lambda}}{x!}$$
 for $x = 0, 1, 2, \dots$

is said to have a *Poisson distribution* with parameter $\lambda > 0$.

6. Find the moment-generating function of a Poisson random variable and use it to calculate the mean and variance of the distribution.