
Math 422 Linear Regression April 11, 2014

Let (X1, Y2), (X2, Y2), . . . , (Xn, Yn) be a random sample from a population with a linear regression equation:

µY |x = α+ βx.

The least squares estimators for β and α are
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In normal regression analysis we assume that the conditional distribution of Y given x is normal (and that the
regression equation is still linear):
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Under these assumptions the maximum likelihood estimators for α and β are the same as above and the maximum likelihood
estimator for σ is
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This leads us to the test statistic
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which is the value of a random variable having a t distribution and n − 2 degrees of freedom. The associated 100(1 − α)%
confidence interval for β is
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In normal correlation analysis we assume that X and Y have a bivariate normal distribution (see section 6.7 of the
book). Under these assumptions the maximum likelihood estimators for the means are

µ̂x = x and µ̂y = y.

The maximum likelihood estimators for the variances are
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The maximum likelihood estimator for the correlation coefficient is the sample correlation coefficient
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Out test statistic here is
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]
which is the value of an approximately standard normal random variable.



1. Let (x1, y1, Z1), (x2, y2, y2), . . . , (xn, yn, zn) be the values of a random sample from a population with linear regression

equation µZ|x,y = α + β1x + β2y. Find a system of equations whose solution α̂, β̂1, and β̂2 comprise the least squares
estimators for α, β1, and β2.

2. The following data taken from a random sample of 10 students consist of scores on a placement exam (x), number of
hours studied for their final exam (y), and their score on the final exam (z).

x y z
112 5 79
126 13 97
100 3 51
114 7 65
112 11 82
121 9 93
110 8 81
103 4 38
111 6 60
124 2 86

Assuming that the regression is linear, calculate the least squares estimators α̂, β̂1, and β̂2 and predict the final exam score
of a student who scored a 100 on the placement exam and studied for 10 hours.


